In order to increase the gravitational forces between two objects,
you have exactly two choices:
-- Increase the product of the two masses.
-- Decrease the distance between their centers of mass.
Answer:
The centripetal acceleration will be "21.785 m/s²".
Explanation:
The given values are:
Time,
t = 0.85 seconds
Length of rope,
r = 0.40 m
Mass of ball,
m = 0.80 kg
As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
The centripetal acceleration will be:
⇒ 
⇒ 
⇒ 
⇒ 
Answer:
The Anatomy of a Lens
Refraction by Lenses
Image Formation Revisited
Converging Lenses - Ray Diagrams
Converging Lenses - Object-Image Relations
Diverging Lenses - Ray Diagrams
Diverging Lenses - Object-Image Relations
The Mathematics of Lenses
Ray diagrams can be used to determine the image location, size, orientation and type of image formed of objects when placed at a given location in front of a lens. The use of these diagrams was demonstrated earlier in Lesson 5 for both converging and diverging lenses. Ray diagrams provide useful information about object-image relationships, yet fail to provide the information in a quantitative form. While a ray diagram may help one determine the approximate location and size of the image, it will not provide numerical information about image distance and image size. To obtain this type of numerical information, it is necessary to use the Lens Equation and the Magnification Equation. The lens equation expresses the quantitative relationship between the object distance (do), the image distance (di), and the focal length (f)
<span>There are four laws of thermodynamic which define and characterize the thermodynamic system at thermal equilibrium.
The laws of thermodynamics state that, in a heat engine, </span>all the heat energy from a source cannot be converted to mechanical energy.