In a saturated solution, extra solid X would remain solid, dissolve in an unsaturated solution, and crystallize in a supersaturated one.
A solution is said to be saturated when there is a maximum amount of solute present that has been dissolved in the solvent. As a result, the system is in an equilibrium between the dissolved and undissolved solutes: A solution is considered to be unsaturated if the solute concentration is less than the equilibrium solubility. A supersaturated solution is one that has more solute than is necessary to generate a saturated solution at a given temperature.
Learn more about Supersaturated here-
brainly.com/question/16817894
#SPJ4
Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
Answer:
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. ... Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field.
Explanation:
Answer:
2.47L
Explanation:
Using the combined gas law equation as follows:
P1V1/T1= P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 705mmHg
P2 = 760mmHg (STP)
V1 = 3.00L
V2 = ?
T1 = 35°C = 35 + 273 = 308K
T2 = 273K (STP)
Using P1V1/T1= P2V2/T2
705 × 3/308 = 760 × V2/273
2115/308 = 760V2/273
Cross multiply
308 × 760V2 = 2115 × 273
234,080V2 = 577,395
V2 = 577,395 ÷ 234,080
V2 = 2.47L
A reaction in which Oxygen (O₂) is produced from Mercury Oxide (HgO) would be a decomposition reaction.
2HgO → 2Hg + O₂
If 250g of O₂ is needed to be produced,
then the moles of oxygen needed to be produced = 250g ÷ 32 g/mol
= 7.8125 mol
Now, the mole ratio of Oxygen to Mercury Oxide is 1 : 2
∴ if the moles of oxygen = 7.8125 mol
then the moles of mercury oxide = 7.8125 mol × 2
= 15.625 mol
Thus the number moles of HgO needed to produce 250.0 g of O₂ is 15.625 mol