1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
13

Dr. Thermo, only has one bottle of neon. However, he needs to run two experiments, each requiring its own bottle. Therefore, he

plans to connect the two bottles together and open the valves on each so that each bottle is partially filled. He wants to know how the enthalpy of the gas will change when he performs this operation. Each bottle has an internal volume of 43.8 L, is completely rigid, and fully insulated. At the start, the full bottle has a pressure of 1.1 MPa, the second bottle is completely evacuated, and both are at room temperature (298 K). After the valves are opened, the two bottles come to equilibrium at 346 kPa. You can assume that neon behaves ideally during this process.
a. Dr. Thermo wants you to derive an equation for H(P.V) and then use that equation to determine the change in enthalpy by integration, showing him all your work.
b. Being a thermo wiz, you know there is another (and easier) way to perform this calculation. Verify your answer to part a using this easier way.
Engineering
1 answer:
nasty-shy [4]3 years ago
7 0

Solution:

The data provided in the question are :

$V_1 = V_2 = 43.8\ L$

             = $ \frac{43.8}{1000}\ m^3$

$ P_1 = 1.1\ MPa$   and   $ P_2 = 0$

Initial pressure of neon = 1.1 MPa

Final Pressure =  346 kPa

Initial temperature of neon = 298 K

$P_1V_1=mRT_1$

$ 1.1 \times 10^6 \times \frac{43.8}{1000} =  m \times \frac{8314}{MM}\times 298$

Molecular mass of neon = 20.1797 g/mole

m = 0.3924 kg

For final temperature:

$P_fV_f=mRT_f$

$V_f = 2 \times \frac{43.8}{1000}$

$ 346 \times 1000 \times 2 \times \frac{43.8}{1000} = m \times \frac{8314}{20.1797} \times T_f$

$ \therefore T_f = 187.48\ K$

a). From first law of thermodynamics :

δQ = δU + δW

Tds = dU + PdV

or dH =  dTs + VdP

As system is insulator,  Tds = 0

$ \Delta H = \left( \frac{P_1V_1-P_2V_2}{\gamma - 1} \right)^{\gamma}$      as  $PV^{\gamma}$  = constant

$P_1V_1^{\gamma}= PV^{\gamma}$

$V= \left( \frac{P_1V_1^{\gamma}}{P} \right)^{\frac{1}{\gamma}}$

Substituting in VdP and integrating, the above equation is obtained.

So, γ = 1.67 (mono atomic neon)

$ \Delta H = 1.67 \times \frac{(1.1 \times 10^6 \times 0.0438 - 346 \times 10^3 \times 2 \times 0.0438)}{1.67-1}$

$ \Delta H = 44942.63\ J$

$ \Delta H = 44.942\ kJ$

b). Easier way is :

$ \Delta H = mC_P\Delta T$

$ \Delta H = 0.3924 \times C_P(T_f-T_1)$

$C_P = \frac{\gamma R}{\gamma-1}$

     $= \frac{1.67 \times 8314}{0.67 \times 20.1797}$

     = 1026.92 J/kg-K

$ \Delta H = 0.3924 \times 1026.92 (187.48-298)$

      $ = -44.585\ kJ$

The negative sign indicates decrease in enthalpy.

The answer by easier way is very near to the value in part (a).

Error (%) =  $ \frac{44.942-44.585}{44.942}  \times 100$

              = 0.015 %   (which is negligible)

Therefore, both the answers are same.

You might be interested in
Piping layout carrying liquid water at 70°F at a volumetric flow rate of 0.2 is composed of four sections of 4-in. Diameter stee
horrorfan [7]

Answer:I have no clue if you find out let me know

Explanation:

7 0
3 years ago
Good night. I need to go to bed. Byeeeeeeeeeeeee.​
dimaraw [331]

Answer:

BYEEEEEEEEEEEE3EEEEEEEEEE

Explanation:

dawg

8 0
3 years ago
(Practice work, not graded)
luda_lava [24]

Answer: ALL CAREFULLY ANSWERED CORRECTLY.

Explanation:

1) A loaf of Bread PHYSICAL SYSTEM

✓ How can the environment affect the edibility of the bread

✓ What are the constituents that makes up the bread

✓ What process is involved in these constituents mixing to form the loaf.

2) The law of thermodynamics makes us to understand that when heat/energy passes through a system, the systems internal energy changes with respect to the conservation of energy law. That is energy lost = energy gained. Typically, ice would melt in a cup of hot tea because of the thermal energy in the molecules of the hot tea. When you heat a material, you are adding thermal kinetic energy to its molecules and usually raising its temperature. The temperature of the ice raises due to the kinetic energy added to it and it melts to water.

3) The theory of systems view the world as a complex system of interconnected parts. If we consider the society; (financial systems, political systems, etc) we will agree that they individually have their own components and it's the summation of this components that makes the system, this implies that system thinking could be applicable in this kinda of systems as long as they are made up of components.

4) Technology has boosted every sector of our lives and it has the capacity to do more. Restricting it's importance to entertainment alone would be an underusing of its potentials. Engineering students infact should not need any drive to be encouraged about maximizing all it can do in shaping our world.

5) ~ Nature shows its splendid soul

~Never ceases to leave us in amazement

~And we are in love

7 0
3 years ago
Calculate the wire pressure for a round copper bar with an original cross-sectional area of 12.56 mm2 to a 30% reduction of area
dybincka [34]

Answer:153.76 MPa

Explanation:

Initial Area\left ( A_0\right )=12.56 mm^2

Final Area\left ( A_f\right )=0.7\times 12.56 mm^2=8.792 mm^2

Die angle=30^{\circ}

\alpha =\frac{30}{2}=15^{\circ}

\mu =0.08

Yield stress\left ( \sigma _y \right )=350 MPa

B=\mu cot\left ( \aplha\right )=0.2985

\sigma _{pressure}=\sigma _y\left [\frac{1+B}{B}\right ]\left [ 1-\frac{A_f}{A_0}\right ]^B

\sigma _{pressure}=350\left [\frac{1+0.2985}{0.2985}\right ]\left [ 1-\frac{8.792}{12.56}\right ]^{0.2985}

\sigma _{pressure}=153.76 MPa

8 0
3 years ago
Technician A say's that The most two-stroke engines have a pressure type lubrication system. Technician be says that four stroke
Paul [167]

Question:Technician A say's that The most two-stroke engines have a pressure type lubrication system. Technician be says that four stroke engines do not require the mixing of oil with gasoline . Which of them is correct ?

Answer: Technician  B is   correct

Explanation: Two types of engines exist , the two stroke (example, used in chainsaws)  is a type of engine that uses two strokes--a compression stroke and a return stroke to produce power in a crankshaft combustion cycle and the  four stroke engines(eg lawnmowers) which  uses four strokes,  2-strokes during  compression and exhaustion accompanied by 2 return strokes for each of the initial process to produce power in a combustion cycle.

While a 2 stroke system engine, requires mixing of oil and fuel to the crankshaft before  forcing  the mixture into the cylinder and do not require a pressurized system.  The 4 stroke system uses a splash and pressurized system where oil is not mixed with gasoline but drawn from the sump and  directed to  the main moving  parts of  crankshaft through its channels.

We can therefore say that Technician A is wrong while Technician B is  correct

6 0
3 years ago
Other questions:
  • A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 4 MPa in the boiler and 25
    14·2 answers
  • A resonant six-turn loop of closely spaced turns is operating at 50 MHz. The radius of the loop is λ/30, and the loop is connect
    15·1 answer
  • שאלה 2 - כתיבת קוד (35 נק')
    12·1 answer
  • Importance of civil engineering in nepal?​
    10·1 answer
  • 6.3.3 Marks on an exam in a statistics course are assumed to be normally distributed
    14·1 answer
  • What is the following diagram called?
    15·1 answer
  • How can you drop two eggs the feweHow can you drop two eggs the fewest amount of times, without them breaking? ...st amount of t
    13·2 answers
  • What is the fastest plane in the world
    13·2 answers
  • Sometimes we need to create heat, such as in circuit breakers and rear window
    5·2 answers
  • Determine the force in each member of the truss. Stale if the members are in tension or compression. Prob.6-3
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!