1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
13

Dr. Thermo, only has one bottle of neon. However, he needs to run two experiments, each requiring its own bottle. Therefore, he

plans to connect the two bottles together and open the valves on each so that each bottle is partially filled. He wants to know how the enthalpy of the gas will change when he performs this operation. Each bottle has an internal volume of 43.8 L, is completely rigid, and fully insulated. At the start, the full bottle has a pressure of 1.1 MPa, the second bottle is completely evacuated, and both are at room temperature (298 K). After the valves are opened, the two bottles come to equilibrium at 346 kPa. You can assume that neon behaves ideally during this process.
a. Dr. Thermo wants you to derive an equation for H(P.V) and then use that equation to determine the change in enthalpy by integration, showing him all your work.
b. Being a thermo wiz, you know there is another (and easier) way to perform this calculation. Verify your answer to part a using this easier way.
Engineering
1 answer:
nasty-shy [4]3 years ago
7 0

Solution:

The data provided in the question are :

$V_1 = V_2 = 43.8\ L$

             = $ \frac{43.8}{1000}\ m^3$

$ P_1 = 1.1\ MPa$   and   $ P_2 = 0$

Initial pressure of neon = 1.1 MPa

Final Pressure =  346 kPa

Initial temperature of neon = 298 K

$P_1V_1=mRT_1$

$ 1.1 \times 10^6 \times \frac{43.8}{1000} =  m \times \frac{8314}{MM}\times 298$

Molecular mass of neon = 20.1797 g/mole

m = 0.3924 kg

For final temperature:

$P_fV_f=mRT_f$

$V_f = 2 \times \frac{43.8}{1000}$

$ 346 \times 1000 \times 2 \times \frac{43.8}{1000} = m \times \frac{8314}{20.1797} \times T_f$

$ \therefore T_f = 187.48\ K$

a). From first law of thermodynamics :

δQ = δU + δW

Tds = dU + PdV

or dH =  dTs + VdP

As system is insulator,  Tds = 0

$ \Delta H = \left( \frac{P_1V_1-P_2V_2}{\gamma - 1} \right)^{\gamma}$      as  $PV^{\gamma}$  = constant

$P_1V_1^{\gamma}= PV^{\gamma}$

$V= \left( \frac{P_1V_1^{\gamma}}{P} \right)^{\frac{1}{\gamma}}$

Substituting in VdP and integrating, the above equation is obtained.

So, γ = 1.67 (mono atomic neon)

$ \Delta H = 1.67 \times \frac{(1.1 \times 10^6 \times 0.0438 - 346 \times 10^3 \times 2 \times 0.0438)}{1.67-1}$

$ \Delta H = 44942.63\ J$

$ \Delta H = 44.942\ kJ$

b). Easier way is :

$ \Delta H = mC_P\Delta T$

$ \Delta H = 0.3924 \times C_P(T_f-T_1)$

$C_P = \frac{\gamma R}{\gamma-1}$

     $= \frac{1.67 \times 8314}{0.67 \times 20.1797}$

     = 1026.92 J/kg-K

$ \Delta H = 0.3924 \times 1026.92 (187.48-298)$

      $ = -44.585\ kJ$

The negative sign indicates decrease in enthalpy.

The answer by easier way is very near to the value in part (a).

Error (%) =  $ \frac{44.942-44.585}{44.942}  \times 100$

              = 0.015 %   (which is negligible)

Therefore, both the answers are same.

You might be interested in
While discussing what affects the amount of pressure exerted by the brakes: Technician A says that the shorter the line, the mor
harina [27]

Answer:

Only Technician B is right.

Explanation:

The cylindrical braking system for a car works through the mode of pressure transmission, that is, the pressure applied to the brake pedals, is transmitted to the brake pad through the cylindrical piston.

Pressure applied on the pedal, P(pedal) = P(pad)

And the Pressure is the applied force/area for either pad or pedal. That is, P(pad) = Force(pad)/A(pad) & P(pedal) = F(pedal)/A(pedal)

If the area of piston increases, A(pad) increases and the P(pad) drops, Meaning, the pressure transmitted to the pad reduces. And for most cars, there's a pressure limit for the braking system to work.

If the A(pad) increases, P(pad) decreases and the braking force applied has to increase, to counter balance the dropping pressure and raise it.

This whole setup does not depend on the length of the braking lines; it only depends on the applied force and cross sectional Area (size) of the piston.

5 0
3 years ago
Answer?...................
torisob [31]

Answer:

The correct option is;

c. Leaving the chuck key in the drill chuck

Explanation:

A Common safety issues with a drill press leaving the chuck key in the drill chuck

It is required that, before turning the drill press power on, ensure that chuck key is removed from the chuck. A self ejecting chuck key reduces the likelihood of the chuck key being accidentally left in the chuck.

It is also required to ensure that the switch is in the OFF position before turning plugging in the power cable

Be sure that the chuck key is removed from the chuck before turning on the power. Using a self-ejecting chuck key is a good way of insuring that the key is not left in the chuck accidentally. Also to avoid accidental starting, make sure the switch is in the OFF position before plugging in the cord. Always disconnect the drill from the power source when making repairs.

5 0
3 years ago
A three-point bending test is performed on a glass specimen having a rectangular cross section of height d = 5.4 mm (0.21 in.) a
Fudgin [204]

Answer:

5.21e-2mm

Explanation:

Please see attachment

8 0
3 years ago
How is a scale model different from other types of models?
SVETLANKA909090 [29]

Answer:

a scale model each size is a certain amount smaller

Explanation:

6 0
3 years ago
A cylinder of aluminum-magnesium alloy 0.5 m long is subjected to an elastic tensile stress of 10.2 MPa. The measured elastic el
elena55 [62]

Answer:

E= 15 GPa.

Explanation:

Given that

Length ,L = 0.5 m

Tensile stress ,σ = 10.2 MPa

Elongation ,ΔL = 0.34 mm

lets take young modulus  = E

We know that strain ε given as

\varepsilon =\dfrac{\Delta L}{L}

\varepsilon =\dfrac{0.34}{0.5\times 1000}

\varepsilon =0.00068

We know that

\sigma = \varepsilon  E\\\\E=\dfrac{10.2}{0.00068}\\E= 15000\ MPa\\E=15\ GPa

Therefore the young's modulus will be 15 GPa.

8 0
3 years ago
Other questions:
  • In a fluid power system, if energy is not transferred to work, what form does it take?
    6·1 answer
  • The water requirement for Class H cement is 38% (i.e.,water (%) by weight of cement),whereas the water requirement for barite is
    7·1 answer
  • By efficiency, we generally mean the ratio of the desired output to the required input. That is, efficiency is a measure of what
    7·1 answer
  • Write a method printShampooInstructions(), with int parameter numCycles, and void return type. If numCycles is less than 1, prin
    15·1 answer
  • A ballistic pendulum consists of a 3.60 kg wooden block on the end of a long string. From the pivot point to the center‐of‐mass
    6·1 answer
  • The convection heat transfer coefficient for a clothed person standing in moving air is expressed as h 5 14.8V0.69 for 0.15 , V
    6·2 answers
  • A silicon diode has a saturation current of 6 nA at 25 degrees Celcius. What is the saturation current at 100 degrees Celsius?
    15·1 answer
  • A machine used to shred cardboard boxes for composting has a first cost of $10,000, an AOC of $7000 per year, a 3-year life, and
    14·1 answer
  • Describe two fundamental reasons why flexural strength should depend on porosity
    14·1 answer
  • If 200 amperes flow from the positive terminal of a battery and operate the starter motor, how many amperes will flow back to th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!