168.96 g of carbon dioxide (CO₂)
Explanation:
The chemical reaction representing the combustion of acetylene:
2 C₂H₂ (g) + 5 O₂ (g)→ 4 CO₂ (g) + 2 H₂O (g)
number of moles = mass / molecular weight
number of moles of acetylene (C₂H₂) = 50 / 26 = 1.92 moles
Taking in account the stoichiometry of the chemical reaction, we devise the following reasoning:
if 2 moles of acetylene (C₂H₂) produces 4 moles of carbon dioxide (CO₂)
then 1.92 moles of acetylene (C₂H₂) produces X moles of carbon dioxide (CO₂)
X = (1.92 × 4) / 2 = 3.84 moles of carbon dioxide (CO₂)
mass = number of moles × molecular weight
mass of carbon dioxide (CO₂) = 3.84 × 44 = 168.96 g
Learn more about:
combustion of hydrocarbons
brainly.com/question/4919676
brainly.com/question/1406903
#learnwithBrainly
Answer:The mole is important because it allows chemists to work with the subatomic world with macro world units and amounts. Atoms, molecules and formula units are very small and very difficult to work with usually. However, the mole allows a chemist to work with amounts large enough to use.
Explanation:
Answer:
Geothermal power comes from Earth's internal heat
Explanation:
The description applied to power sources tends to match the names applied to the source of energy. Sometimes Latin, or other word derivations are used.
For example, "hydro-" refers to water, so it is no surprise that hydroelectric power comes from the movement of water. Of course, "nuclear" refers to the nuclei of the atoms that are split to release energy in a nuclear power plant. Similarly, "geo-" refers to Earth, and "thermal" refers to heat, so "geothermal" energy is the name given to energy derived from Earth's heat.
Answer:
0.1828g/cm³
Explanation:
density= mass÷volume
m= 12.6g
v= 4.1×4.1×4.1 = 68.921cm³
•
density= 12.6÷68.921 = 0.1828g/cm³
Answer:
when a substance is heated it gains thermal energy. Therefore its particles move faster and its temperature rises. when a substance is cool it loses thermal energy which causes its particles to move more slowly and its temperature to drop