Answer:
0.053moles
Explanation:
Hello,
To calculate the number of moles of gas remaining in his after he exhale, we'll have to use Avogadro's law which states that the volume of a given mass of gas is directly proportional to its number of moles provided that temperature and pressure are kept constant. Mathematically,
V = kN, k = V / N
V1 / N1 = V2 / N2= V3 / N3 = Vx / Nx
V1 = 1.7L
N1 = 0.070mol
V2 = 1.3L
N2 = ?
From the above equation,
V1 / N1 = V2 / N2
Make N2 the subject of formula
N2 = (N1 × V2) / V1
N2 = (0.07 × 1.3) / 1.7
N2 = 0.053mol
The number of moles of gas in his lungs when he exhale is 0.053 moles
Answer:
No precipitate is formed.
Explanation:
Hello,
In this case, given the dissociation reaction of magnesium fluoride:
And the undergoing chemical reaction:
We need to compute the yielded moles of magnesium fluoride, but first we need to identify the limiting reactant for which we compute the available moles of magnesium chloride:
Next, the moles of magnesium chloride consumed by the sodium fluoride:
Thus, less moles are consumed by the NaF, for which the moles of formed magnesium fluoride are:
Next, since the magnesium fluoride to magnesium and fluoride ions is in a 1:1 and 1:2 molar ratio, the concentrations of such ions are:
Thereby, the reaction quotient is:
In such a way, since Q<Ksp we say that the ions tend to be formed, so no precipitate is formed.
Regards.
Answer: the correct option is A (A zero net force causes no change to an object's
motion.)
Explanation:
Force is a vector quantity that causes an object to accelerate or change velocity when pushed or pulled. While a NET FORCE can be defined as the combination of all forces acting on an object which is equally capable of accelerating the object.
When a NET FORCE is equal to zero( that is zero net force),there will be no change to an object's motion. When the net force of an object is equal to zero , it shows the object is in either static equilibrium( the objects velocity is zero) or dynamic equilibrium(where the object is moving at constant velocity). In both cases, the object remains motionless because the net forces is equal to zero.
As the question tells you, you need to use the formula
% mass= mass of solute/ mass of solution x 100
mass solute= 30.0 g
mass of solution= 30.0 + 270.0= 300.0 g
% mass= 30.0/ 300.0 x 100= 10%
answer is B