Answer:
The correct answer is 930 grams platelets.
Explanation:
The volume of blood given is 1.89 pints. Total number of gallons in 1.89 pints is,
= 1.89/8 = 0.236 gallon
1 gallon comprise = 3.785 L
So, 0.236 gallon comprise = 0.236 * 3.785 L = 0.89 L
As mentioned that 1 Liter of blood comprise 1.04 kilograms of platelets. Therefore, 0.89 L of blood will contain = 1.04 * 0.89 = 0.93 Kg platelets
1 Kg contain 1000 grams. So, number of platelets in grams will be,
= 1000 * 0.93 = 930 grams platelets.
Answer:
ΔG° of reaction = -47.3 x
J/mol
Explanation:
As we can see, we have been a particular reaction and Energy values as well.
ΔG° of reaction = -30.5 kJ/mol
Temperature = 37°C.
And we have to calculat the ΔG° of reaction in the biological cell which contains ATP, ADP and HPO4-2:
The first step is to calculate the equilibrium constant for the reaction:
Equilibrium Constant K = ![\frac{[HPO4-2] x [ADP]}{ATP}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHPO4-2%5D%20x%20%5BADP%5D%7D%7BATP%7D)
And we have values given for these quantities in the biological cell:
[HP04-2] = 2.1 x
M
[ATP] = 1.2 x
M
[ADP] = 8.4 x
M
Let's plug in these values in the above equation for equilibrium constant:
K = ![\frac{[2.1x10^{-3}] x [8.4x10^{-3}] }{[1.2 x 10^{-2}] }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2.1x10%5E%7B-3%7D%5D%20x%20%5B8.4x10%5E%7B-3%7D%5D%20%7D%7B%5B1.2%20x%2010%5E%7B-2%7D%5D%20%7D)
K = 1.47 x
M
Now, we have to calculate the ΔG° of reaction for the biological cell:
But first we have to convert the temperature in Kelvin scale.
Temp = 37°C
Temp = 37 + 273
Temp = 310 K
ΔG° of reaction = (-30.5
) + (8.314)x (310K)xln(0.00147)
Where 8.314 = value of Gas Constant
ΔG° of reaction = (-30.5 x
) + (-16810.68)
ΔG° of reaction = -47.3 x
J/mol
C seems to be the best answer