Acceleration=force/mass=28/(10+4)=2m/s^2
force10kg=ma=10*2
force4kg=ma=(10*2)=20
the4 kg is pushing against the 10kg block
vf=vi+at
-10=20*28/14 * t
t=30/2=15sec
i hope this can help you.
Speed is v = d/t
Or speed is distance over time
So...
40min / 60min = 0.6667 or 2/3 --> Finding what proportion 40 minutes is to an hour or 60 minutes as we need the units of hours to match up
45km/h = d/0.6667h
d = (45)(0.667)
d = 30.0015 or 30km
Answer
Given,
refractive index of film, n = 1.6
refractive index of air, n' = 1
angle of incidence, i = 35°
angle of refraction, r = ?
Using Snell's law
n' sin i = n sin r
1 x sin 35° = 1.6 x sin r
r = 21°
Angle of refraction is equal to 21°.
Now,
distance at which refractive angle comes out
d = 2.5 mm
α be the angle with horizontal surface and incident ray.
α = 90°-21° = 69°
t be the thickness of the film.
So,


t = 2.26 mm
Hence, the thickness of the film is equal to 2.26 mm.
Answer: current I = 1.875A
Explanation:
If the resistors are connected in series,
Then the equivalent resistance will be
R = 6 + 18 + 15 + 9
R = 48 ohms
Using ohms law
V = IR
Make current I the subject of formula
I = V/R
I = 90/48
I = 1.875A
And if the resistors are connected in parallel, the equivalent resistance will be
1/R = 1/6 + 1/18 + 1/15 + 1/9
1/R = 0.166 + 0.055 + 0.066 + 0.111
R = 1/0.3999
R = 2.5 ohms
Using ohms law
V = IR
I = 90/2.5
Current I = 35.99A
<h2>K.E/P.E = m/k tan²φ x ω²</h2>
Explanation:
The given position of block x = x₀ cos(ωt + φ)
The velocity of block v = dx/dt = - x₀ sin(ωt + φ) x ω
The kinetic energy = 1/2 mv² = 1/2 m x₀² sin²(ωt + φ) x ω²
The potential energy of spring = 1/2 k x² , where k is the spring constant
Thus P.E = 1/2 x k x x₀² cos²(ωt + φ)
When t = 0
K.E = 1/2 m x₀²sin²φ x ω²
P.E = 1/2 k x₀² cos²φ
Dividing these , we have
K.E/P.E = m/k tan²φ x ω²