Answer : Total molecules that will be needed to visualize a single egg will be 78500 molecules of dye.
Explanation : As a single egg cell has an approximately diameter of 100 μm.
We can use this formula to calculate area of the cell membrane;
A = π
;
We can take π as 3.14 and we get;
A = 3.14 X
Soving we get;
A = 7850 μ
Here we have to calculate the amount of dye molecules which will be needed for 10 fluorescent molecules / μ
but;
here 1 μ
= 7850 μ
dye molecules.
Therefore, 10 fluorescent molecules will need;
7850 X 10 = 78500 molecules of dye.
Therefore, the answer is 78500 molecules of dye.
The question is incomplete, the complete question is:
The element tin has the following number of electrons per shell: 2.8. 18, 18, 4. Notice that the number of electrons in the outer shell of a tin atom is the same as that for a carbon atom. Therefore, what must be true of tin? Tin is a polar atom and can bind to other polar atoms. Tin has a high molecular weight to give tin-containing molecules greater stabilty. All of the above Tin conform single covalent bonds with other elements, but not double or triple covalent bonds Tincan bind to up to four elements at a time
Answer:
Tin can bind to up to four elements at a time
Explanation:
Certain important points were made in the question about tin and one of them is that tin is an element in the same group as carbon hence it has the same number of valence electrons as carbon.
Carbon is always tetra valent. The tetra valency of carbon is the idea that carbon forms four bonds.
If tin has the same number of valence electrons as carbon, then, tin can bind to up to four elements at a time
I believe the correct answer is the second option. There will be two cobalt atoms in one formula unit of cobalt (III) oxide. It has a chemical formula of Co2O3. This compound is does not naturally occur so it is being synthesized. It is mostly used as bleaching agent.
Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Answer:
a. The apparatus required to purify gypsum sample are: Bunsen burner, beaker, Filter Funnel, stirring rod, the filter paper.
b. Gypsum is a sulfate mineral that is made up of calcium sulfate dihydrate. Step-by-step instruction to purify gypsum sample is as follows:
1. Add water to the gypsum sample in a beaker.
2. Use the stirring rod to mix the mixture well.
3. Filter off the excess solid from the mixture using the filter paper and filter funnel.
4. Put the filtered mixture over the bunsen burner and evaporate the excess water from the mixture.
5. Allow the hot liquid to cool down and filter it again through the filter paper to get the pure gypsum.