Be heavier
density=mass÷volume
if two items have the same size they have the same volume so the heavier one will be the denser one
The strength of the gravitational field is given by:

where
G is the gravitational constant
M is the Earth's mass
r is the distance measured from the centre of the planet.
In our problem, we are located at 300 km above the surface. Since the Earth radius is R=6370 km, the distance from the Earth's center is:

And now we can use the previous equation to calculate the field strength at that altitude:

And we can see this value is a bit less than the gravitational strength at the surface, which is

.
Answer: q2 = -0.05286
Explanation:
Given that
Charge q1 = - 0.00325C
Electric force F = 48900N
The electric field strength experienced by the charge will be force per unit charge. That is
E = F/q
Substitute F and q into the formula
E = 48900/0.00325
E = 15046153.85 N/C
The value of the repelled second charge will be achieved by using the formula
E = kq/d^2
Where the value of constant
k = 8.99×10^9Nm^2/C^2
d = 5.62m
Substitutes E, d and k into the formula
15046153.85 = 8.99×10^9q/5.62^2
15046153.85 = 284634186.5q
Make q the subject of formula
q2 = 15046153.85/ 28463416.5
q2 = 0.05286
Since they repelled each other, q2 will be negative. Therefore,
q2 = -0.05286
Wouldn't everything fall?
Making a wire thicker has the same effect as making a road wider. It makes it easier for the electron traffic to flow. The resistance decreases, and the current (traffic) increases.