Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer:

Explanation:
When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.
Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

where
is the angle between the axes of the two polarizer
Here we have

So the intensity after the 2nd polarizer is

And substituting the expression for I1, we find:

Answer:
The height of the tree is three (3) deep
Explanation:
It's 3 deep
Under 129, comes 125 and 685;
Under 125, comes 52 : Under 685, comes 511;
Under 52, comes 46 : Under 511, is 601.
This is illustrated below.
129
∧
125,685
|,|
52,511
|,|
46,601
Slow-twitch<span> muscles help enable long-endurance feats such as distance running.
</span>fast-twitch<span> muscles fatigue </span>faster<span> but are used in powerful bursts of movements like sprinting.</span>