Current would increase <span>proportionally to voltage. </span><span> Power dissipation (heating) would increase with the square of the voltage. And resistance means, "</span><span>the refusal to accept or comply with something"</span>
Answer:
Small sports car.
Explanation:
Lets take
mass of the small car = m
mass of the truck = M
As we know that when car collide with the massive truck then due to change in the moment of the car both car as well as truck will feel force.We also know that from Third law of Newton's ,it states that every action have it reaction with same magnitude but in the opposite direction.
Therefore
F = m a
a=Acceleration of the car

F= M a'
a'=Acceleration of the massive truck

Here given that M > m that is why a > a'
Therefore car will experiences more acceleration.
Answer: <u>In a divergent plate boundary</u>, seafloor spreading taking place. It leads to the formation of oceans as new materials are added here along the mid-oceanic ridge. There occur volcanism and shallow-focus earthquakes.
<u>In a convergent plate boundary</u>, two plates collide to form high mountain belts and also volcanic eruptions take place. There occur long chains of volcanic as well as island arcs, in association with deep-focus earthquakes.
<u>In a transform plate boundary</u>, two plates slide past each other, conserving the plates. Shallow-focus earthquakes are generated here.
The earth has experienced various geological processes, such as weathering and erosion of rocks, earthquakes, volcanic eruptions, mass extinction events, plate tectonic movements and many more. These continuous processes have configured the present shape of the earth's surface.
For example, the breaking up of the supercontinent Pangea divided into Laurasia and Gondwanaland and subsequently formed the present scenario. This separation of continents has taken place due to the convection current that generates in the mantle.
The object's speed will not change.
In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:

where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
Answer:
Collisions are basically two types: Elastic, and inelastic collision. Elastic collision is defined as the colliding objects return quickly without undergoing any heat generation. Inelastic collision is defined as the where heat is generated, and colliding objects are distorted.
In elastic collision, the total kinetic energy, momentum are conserved, and there is no wasting of energy occurs. Swinging balls is the good example of elastic collision. In inelastic collision, the energy is not conserved it changes from one form to another for example thermal energy or sound energy. Automobile collision is good example, of inelastic collision.