What we are give: Concentration of base (CB) = 3.4 ×

Then convert all volume in ml to L.
Volume of base (VB) 25.0ml = 0.025L
Volume of acid (VA) 16.6ml = 0.0166L
Now that we have everything we use the formula CAVA=CBVB.
Make 'CA' the subject then solve.
CA=
First, calculate the number of moles of sodium present with the given mass,
31.5 g of sodium x (1 mol sodium/ 23 g sodium) = 1.37 mol sodium
It is given in the equation that for every 2mols of sodium, one mol of H2 is produced.
mols of H2 = (1.37 mols sodium)(1 mol H2/ 2 mols sodium)
mols of H2 = 0.685 mols H2
Then, at STP, 1 mol of gas = 22.4 L.
volume of H2 = (0.685 mols H2)(22.4 L / 1 mol)
volume of H2 = 15.34 L
Answer: 15.34 L
Answer:
Their vibrations speed up
Explanation:
They start vibrating faster and faster and start generating more and more heat and separate from each other so, therefore (usually), become less dense
Answer:
56160grams
Explanation:
First, we need to convert the number of molecules of magnesium chloride (MgCl2) into moles by dividing by Avagadro's number (6.02 × 10^23 molecules)
n = nA ÷ 6.02 × 10^23
n = 14.07 × 10^26 ÷ 6.02 × 10^23
n = 14.07/6.02 × 10^(26-23)
n = 2.34 × 10^3 moles of MgCl2
The balanced reaction given in the question is as follows:
Mg + 2HCl → MgCl2 + H2
If 1 mole of Mg produced 1 mole of MgCl2
Then, 2.34 × 10^3 moles of Mg will also produce 2.34 × 10^3 moles of MgCl2.
Using mole = mass ÷ molar mass (MM)
Molar mass of Mg = 24g/mol
mass = mole × MM
mass = 2.34 × 10^3 × 24
mass = 56.16 × 10^3
mass = 56160grams.
The answer is Eukaryotic cells.
hope I helped