the bond will break
The bond will dissolve (break) if the electron absorbs a photon and is moved from a bonding molecular orbital to an antibonding orbital since there is no longer an overall stabilizing interaction.
<h3>What is an antibonding orbital?</h3>
An antibonding molecular orbital is the molecular orbital created by the destructive overlapping of atomic orbitals.
<h3>Why is it called antibonding orbital?</h3>
- Every atom will add one electron to the bond that makes up the lower energy bond.
- To prevent interacting with the other two electrons, the additional electron will occupy a higher energy state.
- The antibonding orbital is the name of this higher energy orbital.
<h3>What orbitals form an antibond?</h3>
- The bonding orbitals are home to electrons that spend the majority of their time between the nuclei of two atoms, whereas the antibonding orbitals are home to electrons that spend the majority of their time outside the nuclei of two atoms.
<h3>When an electron was elevated to the antibonding orbital, what happened?</h3>
- In contrast, putting electrons in antibonding orbitals will make the molecule less stable.
- The energy levels of the orbitals will determine how many electrons are filled.
- The lower energy orbitals will be filled first, and then the higher energy orbitals.
<h3 />
To learn more about antibonding orbitals visit:
brainly.com/question/17303393
#SPJ4
Answer:
Yes
Explanation:
The tilt of the Earth means the Earth will lean towards the Sun (Summer) or lean away from the Sun (Winter) 6 months later. In between these, Spring and Autumn will occur. The North pole always points the same way as the Earth revolves around the Sun.
C seems to be the best answer
Answer:
10.28 mol
Explanation:
S + 2O = SO2
(atm x L) ÷ (0.0821 x K)
(3.45 x 45.6) ÷ (0.0821 x 373)
=5.13726
Then round it to significant figures
=5.14
5.14 mol SO2 x (2 mol O ÷ 1 mol SO2)
=10.28 mol O
The correct answer is L, solid to gas; given that you meant after the change the substance can fill the container entirely