Answer:
the mass of 8.03 mole of NH3 is 136.51 g
Explanation:
The computation of the mass is shown below:
As we know that
Mass = number of moles × molar mass
= 8.03 mol × 17 g/mol
= 136.51 g
Hence, the mass of 8.03 mole of NH3 is 136.51 g
We simply multiplied the number of moles with the molar mass so that the mass could come
Answer:
Explanation:
The first ionization energy varies in a predictable way across the periodic table. The ionization energy decreases from top to bottom in groups, and increases from left to right across a period. Thus, helium has the largest first ionization energy, while francium has one of the lowest.
Before it is released it as potential energy and after it has been released it transforms into kinetic energy.
Answer:
London dispersion forces
Explanation:
There are different forces of attraction that helps to hold atoms or Molecules of a particular substance together. Some of the forces of attraction are ionic/ electrovalent bond, covalent bond, vander waals forces of attraction and so on.
Under the vander waals forces of attraction we have what is known as the London dispersion forces. This force of attraction is a very weak and it is commonly found in the atoms of noble gases.
The intermolecular force of attraction in which we are talking about that is london dispersion forces is formed as a result of the formation of non-polar dipoles which are not permanent.
Do you still need the answer for these ? if so , i have them