As capacitor was discharging, The charge on the plate got reversed and the motion of charge is opposite to the flow of current.
The charging contemporary asymptotically processes 0 as the capacitor becomes charged up to the battery voltage.
The capacitor is completely charged when the voltage of the electricity supply is equal to that at the capacitor terminals. that is referred to as capacitor charging; and the charging segment is over when modern-day stops flowing thru the electrical circuit.
A capacitor can be slowly charged to the important voltage and then discharged quick to provide the power wanted. it's far even viable to charge several capacitors to a positive voltage and then discharge them in any such way as to get extra voltage out of the gadget than became installed.
Learn more about capacitor here:-brainly.com/question/14883923
#SPJ4
Answer:
25 m/s
Explanation:
Given that:
Initial speed, u = 4 m/s
Final velocity, V = 11 m/s
Time, t = 8 seconds
t2, = 16 seconds
Acceleration, a= (change in velocity) / time interval
a = (11 - 4) / 8
a = 7 / 8 = 0.875m/s²
Final velocity, v2 ;
Acceleration * t2
0.875 * 16 = 14
V2 = 14 m/s
Final speed : v + v2 = (11 + 14)m/s = 25m/s
Answer:
Scientific models are representations of objects, systems or events and are used as tools for understanding the natural world. Models use familiar objects to represent unfamiliar things. Models can help scientists communicate their ideas, understand processes, and make predictions.
Answer:
I = 97.2 10³⁶ kg m²
Explanation:
The moment of inertia of a body the expression of inertia in the rotational movement and is described by the expression
I = ∫ r² dm
In this problem we are told to use the moment of inertia of a uniform sphere, the expression of this moment of inertia is
I = 2/5 M r²
where m is the mass of the earth and r is the radius of the earth.
Let's calculate
I = 2/5 5.97 10²⁴ (6.38 10⁶)²
I = 97.2 10³⁶ kg m²