Answer:
A student is conducting a pendulum experiment. Which of the following pieces of safety equipment would be the most vital to conduct this test?
Explanation:nduebidndo eyn h ehj jd
jknsjk Jjkfnjkjnuifvr
Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s
Decrease the amount of work done.
Answer:
91.017N
Explanation:
Parameters
L=4.67m, m=0.192kg, t = 0.794s, The pulse makes four trips down and back along the cord, we have 4 +4 =8 trips( to and fro)
so N= no of trips = 8, From Wave speed(V) = N *L/t , we have :
V= 8*4.67/0.794 = 47.0529 m/s.
We compute the cords mass per length, Let it be P
P = M/L = 0.192/4.67 = 0.04111 kg/m
From T = P * V^2 where T = Tension, we have
T = 0.04111 * (47.0529)^2
T = 91.017N.
The tension in the cord is 91.017N