Sound waves <span>can NOT travel through the vacuum of space?</span>
Answer: -39.2 m/s or 39.2 m/s directed downwards
Explanation:
This situation is a good example of Free Fall, where the main condition is that the initial velocity must be zero
, and the acceleration is constant (acceleration due gravity).
So, in order to calculate the final velocity
of the rock just at the moment it hitsthe bottom of the cliff, we will use the following equation:

Where:
is the acceleration due gravity (directed downwards)
is the time it takes to the rock to fall down the cliff

This is the rock's final velocity and its negative sign indicates it is directed downwards
Answer: 0.55 m/s
Explanation:
This situation is related to projectile motion (also called parabolic motion), where the main equations are as follows:
(1)
(2)
Where:
is the horizontal displacement of the pencil
is the pencil's initial velocity
since we are told the pencil rolls <u>horizontally</u> before falling
is the time since the pencil falls until it hits the ground
is the initial height of the pencil
is the final height of the pencil (when it finally hits the ground)
is the acceleration due gravity, always acting vertically downwards
Begining with (1):
(3)
(4)
Finding
from (2):
(5)
(6)
Substituting (6) in (4):
(7)
Isolating
:
(8)
(9)
Finally:
"Celestial" = anything to do with the sky
("Cielo" ..... Spanish for "sky"
"Ceiling" ... that thing up over your head
"Caelum" .. Latin for "heaven")
"Terrestrial" = anything to do with the Earth
("Terra" ... Latin for "Earth")
Covalent bonds. Silicon, carbon, germanium, and a few other elements form covalently bonded solids. In these elements there are four electrons in the outer sp-shell, which is half filled. ... In the covalent bond an atom shares one valence (outer-shell) electron with each of its four nearest neighbour atoms.