Binary compounds have 2 different elements, and ternary compounds have 3
Nickel(III)oxide: binary, Ni2O3
Copper (II)iodide: binary, CuI2
Tin(IV) nitride: binary, Sn3N4
Chromium (II)bromide: binary, CrBr2
<span>Iron(III)phosphide: binary, FeP</span>
Answer:
shorter wavelength = alpha wave
Explanation:
Given that,
The alpha wave has a frequency of 5 Hz and the beta wave has a frequency of 2 Hz.
We need to compare the wavelengths of these two waves.
For alpha wave,

For beta wave,

From the above calculations, we find that the wavelength of the alpha wave is shorter than the wavelength of the beta wave.
Answer:
7,94 minutes
Explanation:
If the descomposition of HBr(gr) into elemental species have a rate constant, then this reaction belongs to a zero-order reaction kinetics, where the r<em>eaction rate does not depend on the concentration of the reactants. </em>
For the zero-order reactions, concentration-time equation can be written as follows:
[A] = - Kt + [Ao]
where:
- [A]: concentration of the reactant A at the <em>t </em>time,
- [A]o: initial concentration of the reactant A,
- K: rate constant,
- t: elapsed time of the reaction
<u>To solve the problem, we just replace our data in the concentration-time equation, and we clear the value of t.</u>
Data:
K = 4.2 ×10−3atm/s,
[A]o=[HBr]o= 2 atm,
[A]=[HBr]=0 atm (all HBr(g) is gone)
<em>We clear the incognita :</em>
[A] = - Kt + [Ao]............. Kt = [Ao] - [A]
t = ([Ao] - [A])/K
<em>We replace the numerical values:</em>
t = (2 atm - 0 atm)/4.2 ×10−3atm/s = 476,19 s = 7,94 minutes
So, we need 7,94 minutes to achieve complete conversion into elements ([HBr]=0).
Why, Hello There! The 3 Kinds of rocks that are apart of the rock cycle is...
1.S<span>edimentary
2.M</span><span>etamorphic
And
</span><span>
3.Igneous
Hoped i helped!
</span>