Answer:
<span>The mole concept is important in chemistry because, "</span>Atoms and molecules are very small and the mole concept allows us to count atoms and molecules by weighing macroscopic amounts of material".
Explanation:
To understand this question lets take an example of Hydrogen atom. Let suppose you need to react Hydrogen with Oxygen. You need exactly Two Hydrogen atoms and one Oxygen atom to form one water molecule.
The mass of 1 hydrogen atom is 1.76 × 10⁻²⁴ grams. How will you count the Hydrogen atoms??? How can you measure exactly for 1 Million Hydrogen Atoms???
Answer to these questions and Calculations lies in Mole. It is found that 1 Mole of Hydrogen weights exactly 1.008 gram and contains 6.022 × 10²³ atoms. Now, having this reference in hand you can calculate for any number of Hydrogen atoms.
Result:
So the Mole helps us to zoom a microscopic level to a macroscopic level. :)
Hello!
Atomic Number, is the number where the atom lays on the perodic table and can be found through the number of protons. Meaning that gallium has an atomic number of 31 !
Atomic weight, which is equal to 70 in this case, can be found by subtracting the atomic number from that total to find the remaining number of neutrons that make up the mass. So gallium has 31 protons and 39 protons.
Hope this helps answer your question.
<h3>
Answer:</h3>
C₅H₁₂O(l)+15/2O₂(g)→5CO₂(g)+6H₂O(l)
<h3>
Explanation:</h3>
The balanced chemical equation for the combustion of the hydrocarbon in question is;
C₅H₁₂O(l)+15/2O₂(g)→5CO₂(g)+6H₂O(l)
- A balanced chemical equation is one in which the number of atoms of each element is equal on both sides of the equation.
- Reactant side has; 5 carbon atoms, 12 hydrogen atoms and 16 Oxygen atoms
- Product side has; 5 carbon atoms, 12 hydrogen atoms and 16 Oxygen atoms
- An equation is balanced by putting appropriate coefficients on reactants and products involved in the reaction.
- An equation is balanced so as to obey the law of conservation of mass.
Answer:

Explanation:
In this problem, the temperature stays constant. The volume and pressure change, so we use Boyle's Law. This states that the pressure of a gas is inversely proportional to the volume. The formula is:

Now we can substitute any known values into the formula.
Originally, the gas has a volume of 25.0 liters and a pressure of 2.05 atmospheres.

The volume is decreased to 14.5 liters, but the pressure is unknown.

Since we are solving for the new pressure, or P₂, we must isolate the variable. It is being multiplied by 14.5 liters and the inverse of multiplication is division. Divide both sides by 14.5 L .


The units of liters cancel.



The original values of volume and pressure have 3 significant figures, so our answer must have the same.
For the number we found, that is the hundredth place.
The 4 in the thousandth place (in bold above) tells us to leave the 3 in the hundredth place.

The new pressure is approximately <u>3.53 atmospheres.</u>
The Big Bang is a scientific theory about how the universe started, and then made the stars and galaxies we see today. ... Then about 13.8 billion years ago, space expanded very quickly (thus the name "Big Bang"). This started the formation of atoms, which eventually led to the formation of stars and galaxies.