1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
2 years ago
10

(1+4i)−(−16+9i) i will give brailiest no reporting

Engineering
2 answers:
Karolina [17]2 years ago
8 0

Explanation:

(1+4i)-(-16+9i)

1+4i+16-9i

17-5i

The one in the picture:

15-1(12÷4+1)

15-1(3+1)

15-1×4

15-4

11

Julli [10]2 years ago
6 0

Answer:

The picture is 56 and the written is -12

Explanation:

hard to read tho

You might be interested in
Define Plastic vs elastic deformation.
Snowcat [4.5K]

Answer:

Plastic deformation, irreversible or permanent. Deformation mode in which the material does not return to its original shape after removing the applied load. This happens because, in plastic deformation, the material undergoes irreversible thermodynamic changes by acquiring greater elastic potential energy.

Elastic deformation, reversible or non-permanent. the body regains its original shape by removing the force that causes the deformation. In this type of deformation, the solid, by varying its tension state and increasing its internal energy in the form of elastic potential energy, only goes through reversible thermodynamic changes.

3 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
Gray cast iron, with an ultimate tensile strength of 31 ksi and an ultimate compressive strength of 109 ksi, has the following s
suter [353]

Using an appropriate failure theory, find the factor of safety in each case. State the name of the theory that you are using the theory is max stress theory.

<h3>Wat is the max stress theory?</h3>

The most shear strain concept states that the failure or yielding of a ductile fabric will arise whilst the most shear strain of the fabric equals or exceeds the shear strain fee at yield factor withinside the uniaxial tensile test.”

Stress states at various critical locations are f= 2.662.

Read more about strain:

brainly.com/question/6390757

#SPJ1

3 0
2 years ago
What is a Flame Front Generator?
Inessa [10]

Answer and Explanation:

Flame Front Generator: It is a ignition system which is very useful in flaring system .In this system the air and gases are mixed together and make a combustible air gas mixture. There is a flame front region where the combustion reaction takes place , it is the region where gases as like hydrogen and air mixed with each other and form combustible gases.

7 0
3 years ago
You can help build a safe work environment by using your knowledge of violence prevention strategies to spot what?
Ostrovityanka [42]

Answer:

warning signs

Explanation:

give directions on your surroundings

4 0
3 years ago
Other questions:
  • Water flows down a rectangular channel that is 1.2 m wide and 1 m deep. The flow rate is 0.95 m/s. Estimate the Froude number of
    15·1 answer
  • 9) A construction company employs 2 sales engineers. Engineer 1 does the work in estimating cost for 70% of jobs bid by the comp
    11·1 answer
  • how to calculate the torque when a force is applied on a cog? explain the step-by-step and provide an illustration/diagram. Can
    15·1 answer
  • The grade is a measure of quality and it captures concentration levels (i.e., how pure a certain fraction is). If grade captures
    13·1 answer
  • The costs of mining and transporting coal are roughly independent of the heating value of the coal. Consider:
    15·1 answer
  • List a minimum of four reasons why you might be rejected for a job offer.
    10·1 answer
  • You may have to_______
    14·1 answer
  • Which state did NOT have people that got sick from the
    10·1 answer
  • Suppose a contract states that the designer should bear the responsibility if substantial differences were found between the des
    13·1 answer
  • 12. What procedure should you follow when taking measurements?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!