Answer:
-50.005 KJ
Explanation:
Mass flow rate = 0.147 KJ per kg
mass= 10 kg
Δh= 50 m
Δv= 15 m/s
W= 10×0.147= 1.47 KJ
Δu= -5 kJ/kg
ΔKE + ΔPE+ ΔU= Q-W
0.5×m×(30^2- 15^2)+ mgΔh+mΔu= Q-W
Q= W+ 0.5×m×(30^2- 15^2) +mgΔh+mΔu
= 1.47 +0.5×1/100×(30^2- 15^2)-9.7×50/1000-50
= 1.47 +3.375-4.8450-50
Q=-50.005 KJ
Answer:
The heat input from the combustion phase is 2000 watts.
Explanation:
The energy efficiency of the heat engine (
), no unit, is defined by this formula:
(1)
Where:
- Heat input, in watts.
- Power output, in watts.
If we know that
and
, then the heat input from the combustion phase is:




The heat input from the combustion phase is 2000 watts.
Answer: B
Explanation:
One good way to improve your gas mileage is to accelerate smoothly and directly to a safe speed.
Hope this helps!
Answer:
The Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.
Explanation:
This is what we called HALF WAVE RECTIFIER in which the Peak value of the output voltage is less or lower than that of the peak value of the input voltage by 0.6V reason been that the voltage is tend to drop across the diode.
Therefore this is the formula for Half wave rectifier
Vrms = Vm/2 and Vdc
= Vm/π:
Where,
Vrms = rms value of input
Vdc = Average value of input
Vm = peak value of output
Hence, half wave rectifier is a rectifier which allows one half-cycle of an AC voltage waveform to pass which inturn block the other half-cycle which is why this type of rectifiers are often been used to help convert AC voltage to a DC voltage, because they only require a single diode to inorder to construct.
Use protective gear. Use insulated tools, Wear flame resistant clothing, safety glasses, and insulation gloves, Remove watches or other jewelry, Stand on an insulation mat. 03. Never connect the insulation tester to energized conductors or energized equipment and always follow the manufacturer's recommendations. When installing new electrical machinery or equipment, testing insulation resistance is important for two reasons. First, it ensures that the insulation is in adequate condition to begin operation. ... The test is accomplished by applying DC voltage through the de-energized circuit using an insulation tester. Insulation resistance should be approximately one megohm for each 1,000 volts of operating voltage, with a minimum value of one megohm. For example, a motor rated at 2,400 volts should have a minimum insulation resistance of 2.4 megohms.