Answer:critical stress= 20.23 MPa
Explanation:
Since there was an internal crack, we will divide the length of the internal crack by 2
Length of internal crack, a = 0.7mm,
Half length = 0.7mm/2= 0.35mm changing to meters becomes
0.35/ 1000= 0.35 x 10 ^-3m
The formulae for critical stress is calculated using
σC = (2Eγs /πa) ¹/₂
σC = critical stress=?
Given
E= Modulus of Elasticity= 225GPa =225 x 10 ^ 9 N/m²
γs= Specific surface energy = 1.0 J/m2 = 1.0 N/m
a= Half Length of crack=0.35 x 10 ^-3m
σC= (2 x 225 x 10 ^ 9 N/m² x 1.0 N/m /π x 0.35 x 10 ^-3m)¹/₂
=(4.5 x 10^11/π x 0.35 x 10 ^-3)¹/₂
=(4.0920 x10 ^14)¹/₂
σC=20.23 x10^6 N/m² = 20.23 MPa
Answer: The engineering design process emphasizes open-ended problem solving and encourages students to learn from failure. This process nurtures students abilities to create innovative solutions to challenges in any subject! In addition to their involvement in design and development, many engineers work in testing, production, or maintenance. These engineers supervise production in factories, determine the causes of a component's failure, and test manufactured products to maintain quality.
Explanation:
Answer:
1425.78 N.m
Explanation:
Moments of force is calculated as ;
Moments= Force * distance
M= F*d
The S.I unit for moment of force is Newton-meter (N.m)
Given in the question;
Force = 72 lbs
1 pound = 4.45 N
72 lbs = 4.45 * 72=320.4 N
Distance= 15 ft
1ft= 0.3048 m
15 ft = 15*0.3048 = 4.57 m
d= 4.57 m
M= F*d
M=320.4*4.57 =1425.78 N.m