Answer:
The particle which completes the given equation is :
Explanation:
The given reaction is of a fission reaction:

Total mass on the reactant side is equal to the total mass on the product side:
239 + 1 = 100 +A+ 2
A = 138
Sum of atomic numbers on the reactant side is equal to the sum of atomic number on the product side:
94 + 1(0) = 40 + Z + 2(0)
Z = 54
So atomic number 54 id of Xenon.
The particle which completes the given equation is :

The statement 'energy cannot be created or destroyed' BEST supports the idea that energy remains constant during an energy transformation. It is the first law of thermodynamics.
<h3>Law of Conservation of Energy</h3>
The law of conservation of energy, also known as the first law of thermodynamics, indicates that energy can neither be created nor destroyed.
According to this law, the energy can be interchanged from one type of energy (e.g., kinetic energy) form to another (e.g., potential energy).
The first law of thermodynamics is fundamental for understanding major science disciplines, and it is a rosetta stone in physics.
Learn more about the first law of thermodynamics here:
brainly.com/question/7107028
When the sun, moon, and Earth are lined up (during a new or full moon), the solar tide adds to the lunar tide to produce extremely high tides and very low tides, both of which are known as spring tides.
- Basically describes a situation in astronomy where three celestial bodies align in a straight line as part of a gravitational system. The phrase is frequently used to describe how the Sun, Moon, and Earth are in a straight line.
- The moon is responsible for causing high and low tides. The tidal force is produced by the moon's gravitational pull. Earth and its water protrude outward on both the side that is closest to and farthest from the moon as a result of the tidal force. These watery peaks are high tide
To know more about high tides
brainly.com/question/11243732
#SPJ4
To solve this problem we apply the thermodynamic equations of linear expansion in bodies.
Mathematically the change in the length of a body is subject to the mathematical expression

Where,
Initial Length
Thermal expansion coefficient
Change in temperature
Since we have values in different units we proceed to transform the temperature to degrees Celsius so


The coefficient of thermal expansion given is

The initial length would be,

Replacing we have to,




This means that the building will be 35.5cm taller