Answer:
A) 1.76U×10⁻³N
B) 2.716×10⁻³N
C) 264.5⁰
Explanation:
See detailed workings for (a), (b), (c) attached.
Answer:
c
Explanation:
matter and energy van flow and cycle in an ecosystem depending on the temperature
Sound—energy<span> we can hear—travels only so far before it soaks away into the world around us. Until electrical </span>microphones<span>were invented in the late 19th century, there was no satisfactory way to send </span>sounds<span> to other places. You could shout, but that carried your words only a little further. You couldn't shout in New York City and make yourself heard in London. And you couldn't speak in 1715 and have someone listen to what you said a hundred years later! Remarkably, such things are possible today: by converting sound energy into electricity and information we can store, microphones make it possible to send the sounds of our voices, our music, and the noises in our world to other places and other times. How do microphones work? Let's take a closer look!</span>
Explanation:
Below is an attachment containing the solution.
Not sure the precise concept of "normal observation", but I assume that is observed by "eyes".
Eye observation is basically macroscopic, but when you use a mark, which can be regarded as a point of mass, then it goes to microscopic.
Mark is a reference point which you can compare the relative position change, but with your eyes, first you cannot notice microscopic changes, second the eyes cannot precisely set a stable reference point.