Atomic Number
or
Number of Protons
ΩΩΩΩΩΩΩΩΩΩ
Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s
Answer:
dorsiflexion
Explanation:
To decrease the angle between the anterior surface of the foot and anterior surface of the lower leg is described as: dorsiflexion
Answer:
F = 5
Explanation:
F = m x v^2/r = 2 x 10^2/5 =200/5 = 40 (N)
Answer:
Δy = 6.05 mm
Explanation:
The double slit phenomenon is described by the expression
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference
m = 0,±1, ±2, ...
As they tell us that they measure the dark stripes, we are in a case of destructive interference, let's use trigonometry to find the sins tea
tan θ = y / x
y = x tan θ
In the interference experiments the measured angle is very small so we can approximate the tangent
tan θ = sin θ / cos θ
cos θ = 1
tan θ = sin θ
y = x sin θ
We substitute in the destructive interference equation
d (y / x) = (m + ½) λ
y = (m + ½) λ x / d
The first dark strip occurs for m = 0 and the third dark strip for m = 2. Let's find the distance for these and subtract it
m = 0
y₀ = (0+ ½) 480 10⁻⁹ 1.7 / 0.27 10⁻³
y₀ = 1.511 10⁻³ m
m = 2
y₂ = (2 + ½) 480 10⁻⁹ 1.7 / 0.27 10⁻³
y₂ = 7.556 10⁻³ m
The separation between these strips is Δy
Δy = y₂-y₀
Δy = (7.556 - 1.511) 10⁻³
Δy = 6.045 10⁻³ m
Δy = 6.05 mm