1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
12

To determine a waves frequency you must know the??

Physics
2 answers:
saul85 [17]3 years ago
8 0

Answer:

To determine a waves frequency you must know the distance it travels!

Explanation:

Frequency=speed. Something must move for you to determine how fast it  moves!

lutik1710 [3]3 years ago
7 0

Answer: I think, the number of oscillations in a given period of time.

Explanation: Well I guess because in a period time is known as the rate of occurrence of the wave. Hope this helps!

You might be interested in
Which part of the electromagnetic spectrum have the highest level of photon energy
Pani-rosa [81]
The energy carried by one photon is directly proportional to its
frequency.  So the photon energy is greatest for the electromagnetic
waves with the highest frequency / shortest wavelengths. 

That's why when you get past visible light and on up through ultraviolet,
X-rays, and gamma rays, the radiation becomes dangerous ==> each
photon carries enough energy to tear electrons away from their atoms,
ripping molecules apart and damaging cells.

The photon with the highest energy is a gamma-ray photon.


4 0
3 years ago
Consider two points in an electric field. The potential at point 1, V1, is 33 V. The potential at point 2, V2, is 175 V. An elec
Mnenie [13.5K]

Answer:

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

Explanation:

Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.

Substituting the values of the variables into the equation, we have

ΔV = V₂ - V₁.

ΔV = 175 V - 33 V.

ΔV = 142 V

The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.

So, substituting the values of the variables into the equation, we have

ΔU = eΔV

ΔU = eΔV

ΔU = -1.602 × 10⁻¹⁹ C × 142 V

ΔU = -227.484 × 10⁻¹⁹ J

ΔU = -2.27484 × 10⁻²¹ J

ΔU ≅ -2.275 × 10⁻²¹ J

So, the required equation for the electric potential energy change is

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

5 0
3 years ago
Help and explain thanks
ludmilkaskok [199]

Answer:

the faster an object moves the more kinetic it has. the more mass an object has, the more kinetic energy it has.

4 0
2 years ago
A wheel 1.0 m in radius rotates with an angular acceleration of 4.0rad/s2 . (a) If the wheel’s initial angular velocity is 2.0 r
Oliga [24]

Answer:

(a) ωf= 42 rad/s

(b) θ = 220 rad

(c) at = 4 m/s²  ,  v = 42 m/s

Explanation:

The uniformly accelerated circular movement,  is a circular path movement in which the angular acceleration is constant.

There is tangential acceleration (at ) and is constant.

We apply the equations of circular motion uniformly accelerated :

ωf= ω₀ + α*t  Formula (1)

θ=  ω₀*t + (1/2)*α*t²  Formula (2)

at = α*R  Formula (3)

v= ω*R  Formula (4)

Where:

θ : angle that the body has rotated in a given time interval (rad)

α : angular acceleration (rad/s²)

t : time interval (s)

ω₀ : initial angular velocity ( rad/s)

ωf: final angular velocity ( rad/s)

R : radius of the circular path (cm)

at : tangential acceleration (m/s²)

v : tangential speed (m/s)

Data

α = 4.0 rad/s² : wheel’s angular acceleration

t = 10 s

ω₀ = 2.0 rad/s  : wheel’s initial angular velocity

R = 1.0 m  : wheel’s radium

(a)  Wheel’s angular velocity after 10 s

We replace data in the formula (1):

ωf= ω₀ + α*t

ωf= 2 + (4)*(10)

ωf= 42 rad/s

(b) Angle that rotates the wheel in the 10 s interval

We replace data in the formula (2):

θ=  ω₀*t + (1/2)*α*t²

θ=  (2)*(10) + (1/2)*(4)*(10)²

θ=  220 rad  

θ=  220 rad  

(c) Tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval

We replace data in the Formula (3)

at = α*R = (4)(1)

at = 4 m/s²

We replace data in the Formula (4)

v= ω*R = (42)*(1)

v = 42 m/s

6 0
3 years ago
12. AABC is a right triangle. If AB = 3 and AC = 7, find BC. Leave your answer in simplest radical form.
Dennis_Churaev [7]

Answer: A 2 square root 3

Explanation:

4 0
3 years ago
Other questions:
  • Water is leaking out of an inverted conical tank at a rate of 1.5 cm3 /min at the same time that water is being pumped into the
    11·1 answer
  • A ranger in a national park is driving at 52 km/h when a deer jumps onto the road 87 m ahead of the vehicle. After a reaction ti
    10·1 answer
  • car travels 80 meters due north in 12 seconds then the car turns around and travels 30 Mi do South in 4 seconds calculate the av
    7·1 answer
  • The driver of a stationary car hears a siren of an approaching police car at a frequency of 280Hz. If the actual frequency of th
    13·1 answer
  • Question is in the picture :,)
    5·1 answer
  • A ball is thrown horizontally from a height of 19 m and hits the ground with a speed that is five times its initial speed. What
    14·1 answer
  • Which is the most likely location in the home for mold growth? A) bathroom windows B) living room furniture C) computer keyboard
    11·2 answers
  • When the net force of opposite forces is zero , the forces are
    14·1 answer
  • !!Help!!
    8·1 answer
  • A pick up truck heading south accelerates from 0 m/s to 22 m/s in 8.5 seconds.what is the truck acceleration?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!