Answer:
T_finalmix = 59.5 [°C].
Explanation:
In order to solve this problem, a thermal balance must be performed, where the heat is transferred from water to methanol, at the end the temperature of the water and methanol must be equal once the thermal balance is achieved.

where:

mwater = mass of the water = 0.4 [kg]
Cp_water = specific heat of the water = 4180 [J/kg*°C]
T_waterinitial = initial temperature of the water = 85 [°C]
T_finalmix = final temperature of the mix [°C]

Now replacing:
![0.4*4180*(85-T_{final})=0.4*2450*(T_{final}-16)\\142120-1672*T_{final}=980*T_{final}-15680\\157800=2652*T_{final}\\T_{final}=59.5[C]](https://tex.z-dn.net/?f=0.4%2A4180%2A%2885-T_%7Bfinal%7D%29%3D0.4%2A2450%2A%28T_%7Bfinal%7D-16%29%5C%5C142120-1672%2AT_%7Bfinal%7D%3D980%2AT_%7Bfinal%7D-15680%5C%5C157800%3D2652%2AT_%7Bfinal%7D%5C%5CT_%7Bfinal%7D%3D59.5%5BC%5D)
Any one trial might have been done incorrectly.
Answer:
The mechanical advantage of the system is equal to 19.62
Explanation:
The ratio of the force produced by a machine to the force applied to it is called mechanical advantage. In other words it is the ratio of output force to the input force.
In this problem mass=200kg
applied force=100N
input force=100N
output force=
mechanical advantage 
It gives an idea about the efficiency of a mechanical device. It is indeed a measure of force amplification. In block and tackle system an assembly of ropes and pulleys is used to lift loads. When the moving block is supported by a greater number of rope sections the force amplification will be more.
Answer:
magnitude of the induced emf in the coil is 0.0153 V
Explanation:
Given data
no of turns = 20
area = 0.0015 m²
magnitude B1 = 4.91 T/s
magnitude B2 = 5.42 T/s
to find out
the magnitude of the induced emf in the coil
solution
we know here
emf = -n A d∅ /dt
so here n = 20 and
A = 0.0015
and d∅ = B2 - B1 = 5.42 - 4.91
d∅ = 0.51 T and dt at 1 sec
so put all value
emf = -n A d∅ /dt
emf = -20 (0.0015) 0.51 / 1
emf = - 0.0153
so magnitude of the induced emf in the coil is 0.0153 V