We are given information:
m = 0.0450 kg
Δv = 25.2 m/s
Δt = 1.95 ms = 0.00195s
To find force we use formula:
F = m * a
a is acceleration. To find it we use formula:
a = Δv / Δt
a = 25.2 / 0.00195
a = 12923.1 m/s^2
Now we can find force:
F = 0.0450 * 12923.1
F = 581.5 N
To check the effect of the ball's weight on this movement we need to calculate it and then compare it to this force.
W = m * g
W = 0.0450 * 9.81
W = 0.44145 N
We can see that weight is much smaller than the applied force so it's influence in negligible.
True, nuclear reactions, whether they are fission or fusion depend on generating energy by converting a certain amount of mass by breaking the atom or combining two atoms together.
Answer:
a) 14.2 atm
b) 4.46 atm
c) 1.06 atm
Explanation:
For an ideal gas,
PV = nRT
P = pressure of the gas
V = volume occupied by the gas
n = number of moles of the gas
R = molar gas constant = 0.08206 L.atm/mol.K
T = temperature of the gas in Kelvin
a) For HF,
P =?, V = 2.5L, n = 1.35 moles, T = 320K
P = 1.35 × 0.08206 × 320/2.5
P = 14.2 atm
b) For NO₂
P =?, V = 4.75L, n = 0.86 moles, T = 300K
P = 0.86 × 0.08206 × 300/4.75
P = 4.46 atm
c) For CO₂
P =?, V = 5.5 × 10⁴ mL = 55L, n = 2.15 moles, T = 57°C = 330K
P = 2.15 × 0.08206 × 330/55
P = 1.06 atm
Answer:
At 3.86K
Explanation:
The following data are obtained from a straight line graph of C/T plotted against T2, where C is the measured heat capacity and T is the temperature:
gradient = 0.0469 mJ mol−1 K−4 vertical intercept = 0.7 mJ mol−1 K−2
Since the graph of C/T against T2 is a straight line, the are related by the straight line equation: C /T =γ+AT². Multiplying by T, we get C =γT +AT³ The electronic contribution is linear in T, so it would be given by the first term: Ce =γT. The lattice (phonon) contribution is proportional to T³, so it would be the second term: Cph =AT³. When they become equal, we can solve these 2 equations for T. This gives: T = √γ A .
We can find γ and A from the graph. Returning to the straight line equation C /T =γ+AT². we can see that γ would be the vertical intercept, and A would be the gradient. These 2 values are given. Substituting, we f ind: T =
√0.7/ 0.0469 = 3.86K.