Whenever the motion of an object changes . . . speeding up, or slowing down,
or changing direction . . . that change is called "acceleration". Acceleration is produced by force on the object.If there is no force on the object, then there is no acceleration. That means that
its motion doesn't change. The object remains in constant, uniform motion .
moving with steady speed, in a straight line.
No force is necessary to keep an object moving, only to change its motion.
Atomic mass. Which is the number of protons and neutrons combined.
Answer:
Mass is the amount of matter in an object.
Weight is how much an object weighs.
Hope this helps!
<u>Answer:</u> The expression for equilibrium constant is ![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the general chemical equation:

The expression for
is given as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical reaction:

The expression for
is given as:
![K_{eq}=\frac{[HOCl]^2[HgO.HgCl_2]}{[HgO]^2[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%5BHgO.HgCl_2%5D%7D%7B%5BHgO%5D%5E2%5BH_2O%5D%5BCl_2%5D%5E2%7D)
The concentration of solid is taken to be 0.
So, the expression for
is given as:
![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
Answer : The heat of the reaction is -221.6 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter


where,
= heat released by the reaction = ?
= heat absorbed by the calorimeter
= specific heat of calorimeter = 
= change in temperature = 
Now put all the given values in the above formula, we get:


As, 
So, 
Thus, the heat of the reaction is -221.6 kJ