Answer:
only thing close I can see would be aluminun
Explanation:
atomic number of 13 and 8 2nd electrons in its shell.
Answer:
pH = 11.216.
Explanation:
Hello there!
In this case, according to the ionization of ammonia in aqueous solution:

We can set up its equilibrium expression in terms of x as the reaction extent equal to the concentration of each product at equilibrium:
![Kb=\frac{[NH_4^+][OH^-]}{[NH_3]} \\\\1.80x10^{-5}=\frac{x*x}{0.150-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D%20%5C%5C%5C%5C1.80x10%5E%7B-5%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.150-x%7D)
However, since Kb<<<1 we can neglect the x on bottom and easily compute it via:

Which is also:
![[OH^-]=1.643x10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.643x10%5E%7B-3%7DM)
Thereafter we can compute the pOH first:

Finally, the pH turns out:

Regards!
Answer: 83.11 torr
Explanation:
According to Dalton's Law of partial pressure, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 384 torr
P1 = 289 torr
P2 = 11.89 torr
P3 = ? (let the partial pressure of the remaining gas be Z)
Ptotal = P1 + P2 + Z
384 torr = 289 torr + 11.89 torr + Z
384 torr = 300.89 torr + Z
Z = 384 torr - 300.89 torr
Z = 83.11 torr
Thus, the partial pressure of the remaining gas is 83.11 torr.
Answer:
A 19
Explanation:
2 mole of KClO3 produces 3 mole of O3
2 : 3
1 : 3/2
12.61 : 3/2 × 12.61
12.61 : 18.9
12.61 mole of KClO3 produces 18.9mole of O2.
Answer:
(a) 
(b) Rubidium
Explanation:
Hello,
This titration is carried out by assuming that the volume of base doesn't have a significant change when the mass is added, thus, we state the following data a apply the down below formula to compute the molarity of the base solution:

Solving for the molarity of base we've got:

Now, we can compute the moles of the base as:

(a) Now, one divides the provided mass over the previously computed moles to get the molecular mass of the unknown base:

(b) Subtracting the atomic mass of oxygen and hydrogen, the metal's atomic mass turns out into:

So, that atomic mass dovetails to the Rubidium's atomic mass.
Best regards.