1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
2 years ago
8

Science: Please help me with this due in 5 minutes

Physics
1 answer:
babunello [35]2 years ago
6 0

Answer: Use less water

only turn on lights when needed

electrical cars

less gas usage

Explanation:

You might be interested in
Why are multiple images seen when two plane mirrors are placed at an angle​
Whitepunk [10]

Answer: Can I get a picture???

8 0
3 years ago
How does kinetic energy affect the stopping distance of a vehicle traveling at 30 mph compared to the same vehicle traveling at
amid [387]
Kinetic energy<span> increases with the square of the velocity (KE=1/2*m*v^2). If the velocity is doubled, the KE quadruples. Therefore, the </span>stopping distance<span> should increase by a factor of four, assuming that the driver is </span>can<span> apply the brakes with sufficient precision to almost lock the brakes.</span>
5 0
2 years ago
When light of wavelength 160 nm falls on a gold surface, electrons having a maximum kinetic energy of 2. 66 ev are emitted. Find
enyata [817]

When the light of wavelength is falling on gold surface, the electrons begin to exchange energies.

a)The work function in eV is Φ =5.097 eV.

b) The cut-off wavelength is λ₀ = 243.71 nm

c) The frequency is ν₀  =1.231 × 10¹⁵ Hz

<h3>What is work function?</h3>

The energy needed for a particle to escape and break through the surface.

The kinetic energy of the light emitted is 2.66 eV and wavelength of the light is 160 nm = 160 × 10⁻⁹ m.

a) The work function of the gold for given maximum kinetic energy is

Φ = hc / λ  - K.Emax

Substituting 6.626 × 10⁻³⁴ J.s for h, 3 × 10⁸ m/s for c and 2.66 eV for K.Emax, work function will be

Φ =8.16 × 10⁻¹⁹ J

1 eV = 1.6 × 10⁻¹⁹

The work function in eV is Φ =5.097 eV.

b) The cutoff wavelength is related to work function as

λ₀ = hc / Φ

Substitute the corresponding values into the equation, we get the cut off wavelength

λ₀ = 243.71 nm

c) The frequency corresponding to the cut-off wavelength is

ν₀ = c / λ₀

Substitute the corresponding values into the equation, we get the frequency,

ν₀  =1.231 × 10¹⁵ Hz

Therefore, the values for the following are

a)The work function in eV is Φ =5.097 eV.

b) The cut-off wavelength is λ₀ = 243.71 nm

c) The frequency is ν₀  =1.231 × 10¹⁵ Hz

Learn more about wave function.

brainly.com/question/17484291

#SPJ4

3 0
2 years ago
A racquetball with a mass of 42 g is moving with a horizontal speed of 7 m/s to the right (+x direction). It hits the wall of th
zheka24 [161]

The magnitude of the racquetball's change in momentum is 0.59 kgm/s approximately.

Given that a racquetball with a mass of 42 g is moving with a horizontal speed of 7 m/s to the right (+x direction).

mass m  = 42g = 42/1000 = 0.042kg

initial velocity before collision u = 7 m/s

It hits the wall of the court and rebounds to the hitter with a horizontal speed of 7m/s to the left (-x direction). That is,

velocity after collision v = 7 m/s

To calculate the magnitude of the racquetball's change in momentum, we will use the formula below

Change in momentum = Mv - Mu

Since momentum is a vector quantity, we will consider the direction.

Change in momentum = 0.042 x 7 - ( 0.042 x - 7)

Change in momentum = 0.294 + 0.294

Change in momentum = 0.588 kgm/s

Therefore, the magnitude of the racquetball's change in momentum is 0.59 kgm/s approximately.

Learn more on momentum here: brainly.com/question/402617

5 0
2 years ago
A tube 1.20 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.350 m long and has a mass o
Ksju [112]

Answer:

71.4583 Hz

67.9064 N

Explanation:

L = Length of tube = 1.2 m

l = Length of wire = 0.35 m

m = Mass of wire = 9.5 g

v = Speed of sound in air = 343 m/s

The fundamental frequency of the tube (closed at one end) is given by

f=\frac{v}{4L}\\\Rightarrow f=\frac{343}{4\times 1.2}\\\Rightarrow f=71.4583\ Hz

The fundamental frequency of the wire and tube is equal so he fundamental frequency of the wire is 71.4583 Hz

The linear density of the wire is

\mu=\frac{m}{l}\\\Rightarrow \mu=\frac{9.5\times 10^{-3}}{0.35}\\\Rightarrow \mu=0.02714\ kg/m

The fundamental frequency of the wire is given by

f=\frac{1}{2l}\sqrt{\frac{T}{\mu}}\\\Rightarrow f^2=\frac{1}{4l^2}\frac{T}{\mu}\\\Rightarrow T=f^2\mu 4l^2\\\Rightarrow T=71.4583^2\times 0.02714\times 4\times 0.35^2\\\Rightarrow T=67.9064\ N

The tension in the wire is 67.9064 N

7 0
2 years ago
Other questions:
  • Two positively charged particles are 0.03 m apart. The first particle has a
    6·2 answers
  • A baseball is dropped off the side of a cliff. It free-falls to the ground in 8 seconds. During the third second, the ball is tr
    6·2 answers
  • A patch of ground in direct sunlight will have ______ a patch of ground shaded by clouds.
    8·2 answers
  • Inverse beta decay, the subatomic interaction by which an electron and a proton are "crushed" into a neutron, the process in whi
    6·1 answer
  • Create a group of 3-4 students. Using your cell phone flashlight and the filter, create a "blue" flashlight, "red" flashlight, a
    14·1 answer
  • What is the date of birth for 14
    9·2 answers
  • What best explains why a wood burning fire place represents an open system
    13·2 answers
  • What is the speed of light in a vacuum
    7·2 answers
  • Write down the equation that links energy transferred, charge flow, and<br> potential difference.
    14·1 answer
  • HELP!! WILL MARK BRAINLIEST!!!!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!