Answer:
9.8m/s²
Explanation:
The acceleration of the ball thrown after leaving my hand is 9.8m/s². This will be the acceleration due to gravity on the body.
- Acceleration due to gravity is caused by the pull of the earth on a massive object.
- The value of this acceleration is 9.8m/s².
- As the ball nears the surface, it comes near zero.
Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:

where
is the coefficient of friction = 0.02
R = Normal reaction of the load =
=
= 
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N
The photosynthetic wave interaction between visible light and a photosensitive part of a plant is very important t how plants use light to grow.
The frequency range and intensity levels of this light, I don't know.
Maybe the above ???
Answer:
Established a government for the Northwest Territory, outlined the process for admitting a new state to the Union, and guaranteed that newly created states would be equal to the original thirteen states
Explanation:
Goooogle, so I hope this helps somewhat
Also, isn't this a History question? You put physics lol
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.