Answer:
89.45 v/v
Explanation:
Let's take the data:
First draw the amplifier circuit.
After the circuit, the voltage division rule can be used to compute the parameters:
The input section is computed like this: 
The output section is computed like this 
The product A
gives
A
= A×
×
Computing gives output voltage = 89.45 v/v
Answer:
informal language
Explanation:
you do not need to be formal! you are not at a business conference. technical is not needed either since you are not discussing the intricacies of your job or some computer language.
Answer:
The person is 187[m] farther and 70° south to east.
Explanation:
We can solve this problem by drawing a sketch of the location of the person and the truck, then we will draw the displacement vectors and finally the length of the vector and the direction of the vector will be measured in order to give the correct indication of where the person will have to move.
First we establish an origin of a coordinate system.
We can see in the attached schema that the red vector is the displacement vector from the last point to where the truck is located.
The length of the vector is 187 [m], and the direction is 70 degrees south to East.
1.A) 4.9 m
AL2006 Ace
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Read more on Brainly.com - brainly.com/question/11776597#readmore
2 idk sorry
Answer:
The ratio of the energy stored by spring #1 to that stored by spring #2 is 2:1
Explanation:
Let the weight that is hooked to two springs be w.
Spring#1:
Force constant= k
let x1 be the extension in spring#1
Therefore by balancing the forces, we get
Spring force= weight
⇒k·x1=w
⇒x1=w/k
Energy stored in a spring is given by
where k is the force constant and x is the extension in spring.
Therefore Energy stored in spring#1 is, 
⇒
⇒
Spring #2:
Force constant= 2k
let x2 be the extension in spring#2
Therefore by balancing the forces, we get
Spring force= weight
⇒2k·x2=w
⇒x2=w/2k
Therefore Energy stored in spring#2 is, 
⇒
⇒
∴The ratio of the energy stored by spring #1 to that stored by spring #2 is
2:1