Ionization energy is directly proportional to elements location on the periodic table
Answer:
158 L.
Explanation:
What is given?
Pressure (P) = 1 atm.
Temperature (T) = 112 °C + 273 = 385 K.
Mass of methane CH4 (g) = 80.0 g.
Molar mass of methane CH4 = 16 g/mol.
R constant = 0.0821 L*atm/mol*K.
What do we need? Volume (V).
Step-by-step solution:
To solve this problem, we have to use ideal gas law: the ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas. The formula is:

Where P is pressure, V is volume, n is the number of moles, R is the constant and T is temperature.
So, let's find the number of moles that are in 80.0 g of methane using its molar mass. This conversion is:

So, in this case, n=5.
Now, let's solve for 'V' and replace the given values in the ideal gas law equation:

The volume would be 158 L.
There are 3 equations involved in manufacturing Nitric Acid from Ammonia.
First the ammonia is oxidized:
4NH3 + 5O2 = 4NO + 6H2O
Then for the absorption of the nitrogen oxides.
2NO + O2 = N2O4
Lastly, the N2O4 is further oxidized into Nitric acid.
3N2O4 + 2H2O = 4HNO3 + 2NO
Then run stoichiometry through these equations.
The first equation produces roughly 271,722,938 grams of NO
The second equation produces roughly 416,606,944 grams of N2O4
The last equation produces roughly 380,412,294 grams of HNO3 (nitric acid)
Convert the exact number back into tons, and your answer is: 419.332775 tons.
Rounded, I'm going to say that's 419.33 tons.
Hope this helps! :)
Also, it seems that commercially, Nitric Acid is commonly made by bubbling NO2 into water, rather than using ammonia.
The answer is A: Areas where the geologic process occurred now have major petroleum reserves