1. Calcium & Nitrogen: Ca3N2
2. Aluminum & Chlorine: AlCl3
3. Aluminum & Nitrogen: AlN
4. Potassium & Bromine: KBr
5. Magnesium & Oxygen: MgO
6. Sodium & Sulfur: Na2S
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
Answer:
the answer is option E they are bronsted lowry acid
The reaction for magnesium iodide when put into water is as below
MgI2(s) → Mg^2+(aq) + 2I^-(aq)
when magnesium iodide but into water it dissociate/ ionize completely into Mg^2+ and 2l^- ions. Magnesium iodide dissociate/ionize completely because magnesium iodide is a strong electrolyte which dissociate/ ionize completely into their ions when it is put into water .
★ « <em><u>what is oxidation number of S in H2SO5??</u></em><em><u> </u></em><em><u>»</u></em><em><u> </u></em><em><u>★</u></em>
- <em><u>it's </u></em><em><u> </u></em><em><u>6</u></em><em><u>!</u></em><em><u>!</u></em>
Explanation:
- <em>Oxidation number of S in H2SO5 is 6 .</em>