Answer: NaNO3 (Sodium Trioxonitrate (V) )
Explanation:
The equation of the reaction is; HNO3 + NaOH -----> H2O + NaNO3
Answer:
C. It makes sure there is a balance inside the body
Explanation:
Hope this helps
Answer:
Rate depends on the rate constant. The rate constant depends on temperature and activation energy. If you have lower activation energy the rate will be higher. This is why catalysts are added since catalysts provide an alternate pathway that requires lower activation energy and catalysts are added to increase the rate of reaction.
Explanation:
This is only the answer if you were asking:
"Which corresponds to the faster rate: a mechanism with a small activation energy or one with a large activation energy?"
Thats what I understood about your question.
When PH + POH = 14
∴ POH = 14 -7 = 7
when POH = -㏒[OH-]
7 = -㏒ [OH-]
∴[OH-] = 10^-7
by using ICE table:
Mn(OH)2(s) ⇄ Mn2+ (aq) + 2OH-(aq)
initial 0 10^-7
change +X +2X
Equ X (10^-7 + 2X)
when Ksp = [Mn2+][OH-]^2
when Ksp of Mn(OH)2 = 4.6 x 10^-14
by substitution:
4.6 x 10^-14 = X*(10^-7+2X)^2 by solving this equation for X
∴ X =2.3 x 10-5 M
∴ The solubility of Mn(OH)2 in grams per liter (when the molar mass of Mn(OH)2 = 88.953 g/mol
= 2.3 x10^-5 moles/L * 88.953 g/mol
= 0.002 g/ L
It would most likely be a observation or hypothesis