Answer:
175s
Explanation:
time it takes sunlight to reach the earth in vacuum
C=light speed=299792458m/s
X=1.5x10^8km=1.5x10^11m
c=X/t
T1=X/c
T1=1.5X10^11/299792458=500.34s
time it takes sunlight to reach the earth in water:
First we calculate the speed of light in water taking into account the refractive index
Cw=299792458m/s/1.349=222233104.5m/s
T2=1.5x10^11/222233104.5m/s=675s
additional time it would take for the light to reach the earth
ΔT=T2-T1=675-500=175s
Answer:
Elastic Collision
Inelastic Collision
The total kinetic energy is conserved. The total kinetic energy of the bodies at the beginning and the end of the collision is different.
Momentum does not change. Momentum changes.
No conversion of energy takes place. Kinetic energy is changed into other energy such as sound or heat energy.
Highly unlikely in the real world as there is almost always a change in energy. This is the normal form of collision in the real world.
An example of this can be swinging balls or a spacecraft flying near a planet but not getting affected by its gravity in the end.
Position is measured in meters (m), so it is a base quantity.
<h3>What is base quantity?</h3>
A base or fundamental quantity is a physical quantity, in which other quantities are derived from.
Example of fundamental quantities;
- Mass
- Length (position)
- Time
- Temperature
- Amount of substance
<h3>What is a derived quantity?</h3>
Derived quantities are those quantities obtained or expressed from fundamental quantities.
Example of derived quantities;
- Speed
- Acceleration
- Volume
- Area
- Density, etc
Thus, we can conclude that position measured in meters (m) is a base quantity.
Learn more about base quantities here: brainly.com/question/14480063
#SPJ1
Answer:
The skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.
Explanation:
To solve the problem it is necessary to go back to the theory of conservation of momentum, specifically in relation to the collision of bodies. In this case both have different addresses, consideration that will be understood later.
By definition it is known that the conservation of the moment is given by:

Our values are given by,

As the skater 1 run in x direction, there is not component in Y direction. Then,
Skate 1:


Skate 2:


Then, if we applying the formula in X direction:
m_1v_{x1}+m_2v_{x2}=(m_1+m_2)v_{fx}
75*5.45-75*1.41=(75+75)v_{fx}
Re-arrange and solving for v_{fx}
v_{fx}=\frac{4.04}{2}
v_{fx}=2.02m/s
Now applying the formula in Y direction:




Therefore the skater 1 and skater 2 have a final speed of 2.02m/s and 2.63m/s respectively.