For a reaction to occur, there should be mobility of ions in reactant side.
If the reactant is larger, its mobility will be lesser than that of smaller ones.
So reactants smaller in size have higher mobility which makes reaction faster.
Hence D is the correct option.
Hope this helps, have a great day/night ahead!
Answer:
Two moles of hydrogen gas combine with one mole of oxygen gas to produce two moles of water.

Explanation:
This is the required amount of each element to synthesize water. The equation has been balanced using coefficients.
Answer:
Titration reveals that 12 mL of 1.5 M hydrochloric acid are required to neutralize 25 mL calcium hydroxide solution . What is the molarity of the Ca(OH) 2 solution
Explanation:
Molting
~~~hope this helps~~~
~~~davatar~~~
The molar concentration of the KI_3 solution is 0.251 mol/L.
<em>Step 1</em>. Write the <em>balanced chemical equation</em>
I_3^(-) + 2S_2O_3^(2-) → 3I^(-) + S_4O_6^(2-)
<em>Step 2</em>. Calculate the <em>moles of S_2O_3^(2-)</em>
Moles of S_2O_3^(2-)
= 27.9 mL S_2O_3^(2-) ×[0.270 mmol S_2O_3^(2-)/(1 mL S_2O_3^(2-)]
= 7.533 mmol S_2O_3^(2-)
<em>Step 3</em>. Calculate the <em>moles of I_3^(-)
</em>
Moles of I_3^(-) = 7.533 mmol S_2O_3^(2-)))) × [1 mmol I_3^(-)/(2 mmol S_2O_3^(2-)] = 3.766 mmol I_3^(-)
<em>Step 4</em>. Calculate the <em>molar concentration of the I_3^(-)
</em>
<em>c</em> = "moles"/"litres" = 3.766 mmol/15.0 mL = 0.251 mol/L