1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
3 years ago
14

Could magnets absorb electricity?

Physics
2 answers:
Phantasy [73]3 years ago
5 0

If they are Conductive medals then yes.

They do attract or push away, cause sometimes they love each other or hate each other. x'D lol

Leno4ka [110]3 years ago
3 0

nah Magnets are a source or energy not a detector of energy hope tht helps

You might be interested in
A 1.2 L weather balloon on the ground has a temperature of 25°C and is at atmospheric pressure (1.0 atm). When it rises to an el
Irina-Kira [14]

Answer:

71.19 C

Explanation:

25C = 25 + 273 = 298 K

Applying the ideal gas equation we have

\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}

where P, V and T are the pressure, volume and temperature of the gas at 1st and 2nd stage, respectively. We can solve for the temperature and the 2nd stage:

T_2 = T_1\frac{P_2V_2}{P_1V_1} = 298\frac{0.77*1.8}{1.2*1} = 298*1.155 = 344.19 K = 344.19 - 273 = 71.19 C

4 0
3 years ago
Pete Zaria works on weekends at Barnaby's Pizza Parlor. His primary responsibility is to fill drink orders for customers. He fil
laila [671]

Answer:

W_n_e_t=7.648512 \approx 7.6J

K.E=0.8J

v=0.7844645406 \approx 0.78m/s

Explanation:

From the question we are told that

Mass of pitcher   M= 2.6kg

Force on pitcher f=8.8N

Distance traveled 48cm=>0.48m

Coefficient of friction \mu=0.28

a)Generally frictional force is mathematically given by

F=\mu N

F=0.28*2.6*9.8

F=7.1344N

Generally work done on the pitcher is mathematically given as

W_n_e_t=W_f+W_F

W_f=8.8*0.48=>4.224N\\W_F=7.1344*0.48=>3.424512N

W_n_e_t=4.224-3.424512

W_n_e_t=0.799488\approx 0.8J

b)Generally K.E can be given mathematically as

K.E= W_n_e_t

Therefore

K.E=0.8J

c)Generally the equation for kinetic energy is mathematically represented by

K.E=1/2mv^2

0.8=1/2mv^2

Velocity as subject

v=\sqrt{\frac{K.E*2}{m} }

v=\sqrt{\frac{0.8*2}{2.6} }

v=0.7844645406 \approx 0.78m/s

6 0
3 years ago
Starting from your campsite you walk 3.0 km east, 6.0 km north, 1.0 km east, and then 4.0 km west. How far are you from your cam
Hatshy [7]
Think of it like a graph. You start at the origin which is (0,0).  go three to the east which now you are (3,0). Then, six to the north. Now, you are at (3,6).  1 to the east, ((4,6).  Then you go 4 to the west which is back tracking. So, you end at (0,6) which is saying you are now 6 km north from your campsite. 

Hope this helps!
6 0
3 years ago
An electric immersion heater is put at the bottom of a large tank of water. The water next to the heater becomes warm
djyliett [7]

Answer:

when the water is heated with immersion heater, the water becomes less dense due to which the warm water rises up and the cooler water fills it's space.

4 0
3 years ago
The volume electric charge density of a solid sphere is given by the following equation: The variable r denotes the distance fro
qwelly [4]

Answer:

62.8 μC

Explanation:

Here is the complete question

The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?

Solution

The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ

So,  Q =  ∫∫∫ρdV

Q =  ∫∫∫ρr²sinθdθdrdΦ

Q =  ∫∫∫(0.2r²)r²sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π

So, Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴[∫sinθdθ]drdΦ

Q =  ∫∫0.2r⁴[-cosθ]drdΦ

Q =  ∫∫0.2r⁴-[cosπ - cos0]drdΦ

Q =  ∫∫∫0.2r⁴-[-1 - 1]drdΦ

Q =  ∫∫0.2r⁴-[- 2]drdΦ

Q =  ∫∫0.2r⁴(2)drdΦ

Q =  ∫∫0.4r⁴drdΦ

Q =  ∫0.4r⁴dr∫dΦ

Q =  ∫0.4r⁴dr[Φ]

Q =  ∫0.4r⁴dr[2π - 0]

Q =  ∫0.4r⁴dr[2π]

Q =  ∫0.8πr⁴dr

Q =  0.8π∫r⁴dr

Q =  0.8π[r⁵/5]

Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]

Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]

Q = 0.8π[0.025 m⁵ - 0 m⁵]

Q = 0.8π[0.025 m⁵]

Q = (0.02π mC/m⁵) m⁵

Q = 0.0628 mC

Q = 0.0628 × 10⁻³ C

Q = 62.8 × 10⁻³ × 10⁻³ C

Q = 62.8 × 10⁻⁶ C

Q = 62.8 μC

3 0
3 years ago
Other questions:
  • Why do gamma rays have no charge?
    12·1 answer
  • What is isostasy dependent on a balance between
    10·2 answers
  • The dome of a Van de Graaff generator receives a charge of 0.00011 C. The radius of the dome is 5.2 m. Find the strength of the
    10·1 answer
  • We are constantly surrounded by many types of energy transfers and transformations, showing that energy in a system is conserved
    11·1 answer
  • (a) At a distance of 0.200 cm from the center of a charged conducting sphere with radius 0.100 cm, the electric field is 480 N&g
    9·1 answer
  • How do carbon 12 and carbon 13 differ?
    15·1 answer
  • A thug pushes some 100 kg punk with 300 N of force. How much is the punk accelerated?
    6·1 answer
  • Determine the work done by the constant force. The locomotive of a freight train pulls its cars with a constant force of 15 tons
    13·1 answer
  • Complete play the table by writing the location orientation size and type of image formed by the lenses below.
    15·1 answer
  • A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!