That's 105 km that he flew, or 65.2 miles ! I'm absolutely positive
that the crow must have landed and gotten some rest when you
weren't looking. But that had no effect on his displacement when
he got where he was going, so we can continue to solve the problem:
The displacement is the distance and direction from the place
where the crow took off to the place where he landed.
-- It's distance is the hypotenuse of the right triangle whose legs
are 60 km and 45 km.
D² = (60 km)² + (45 km)²
= 3,600 km² + 2,025 km² = 5,625 km²
D = √(5625 km²) = 75 km .
-- It's direction is the angle whose tangent is (45 S / 60 W).
tan⁻¹ (45/60) = tan⁻¹ (0.75) = 36.9° south of west
= 53.1° west of south.
= not exactly southwest but close.
Answer:
what help you need?????????
A quadrilateral with only one pair of parallel sides.
<span>a small carpal bone in the base of the hand, articulating with the metacarpal of the index finger.
</span>
Answer:
The frequency of sound wave created by trumpet is 437.5Hz
Explanation:
Given
the speed of sound wave = 350 m
the wavelength of sound wave = 0.8 m
the frequency of sound wave = ?
All the waves have same relationship among wavelength, frequency and speed, which is given by the equation:
v = fλ, where
v is speed of the wave
f is frequency of the wave
λ is wavelength of the wave
therefore frequency of sound wave is given by
f = v/λ
= 350m
/0.8m
= 437.5
= 437.5Hz (since 1
= 1 Hz (Hertz)
Hence the frequency of sound wave created by trumpet is 437.5Hz