<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>
Answer: D
Rs = 10.0 m/s
The speed of the boat relative to an observer standing on the shore as it crosses the river is 10.0m/s
Explanation:
Since the boat is moving perpendicular to the current of the river, the speed of the boat has two components.
i. 8.0m/s in the direction perpendicular to the current
ii. 6.0m/s in the direction of the current.
So, the resultant speed can be derived by using the equation;
Rs = √(Rx^2 + Ry^2)
Taking
Ry = 8.0m/s
Rx = 6.0m/s
Substituting into the equation, we have;
Rs = √(6.0^2 + 8.0^2)
Rs = √(36+64) = √100
Rs = 10.0 m/s
The speed of the boat relative to an observer standing on the shore as it crosses the river is 10.0m/s
Well, if i am correct. a substance is:
a particular kind of matter with uniform properties
or...
the real physical matter of which a person or thing consists and which has a tangible, solid presence.
choose which ever you like better:)
Answer:
The final velocity after the collision is 0.27 m/s.
Explanation:
Given that,
Mass of tiger, m = 0.195 kg
Initial speed of tiger model, v = 0.75 m/s
Mass of another clay model, m' = 0.335 kg
Initially, second model is at rest, v' = 0
We need to find the final velocity after the collision. It is a case of inelastic collision. Using the conservation of linear momentum as :

So, the final velocity after the collision is 0.27 m/s.