Answer:
See the answer and explanation below , please.
Explanation:
A conjugate base is defined as that formed after an acid donates its proton.
For each article, a continuation of the conjugate bases (highlighted in bold), for dissociation in water:
a) HF + H20 --> F- + H30+
b) H20+ H20 --> OH- + H30+
C)H2PO3- + H20--> HPO3 2- + H30+
d) HSO4- + H20 --> SO4 2- + H30+
E) HCL02 + H20 --> CLO02 - + H30+
Answer:
Reaction 1 is balanced but 2 is not balanced , the balance equation are :
1. 
2.
Explanation:
Balanced Equations : These are the equation which follows the law of conservation of mass .
The total number of atoms present in reactant is equal to total number of atoms present in product.
1. 
This is acid - base type reaction where
act as Acid
act as weak base
Reactant :
,
Number of atoms of :
C = 2 (
) + 1 (
)
= 2 + 1
= 3
H = 4(
) + 1 (
)
= 4 + 1
5
O = 2(
) + 3 (
)
= 5
Na = 1 (
)
= 1
Product :
,
, 
Number of atoms :
C = 1(
) + 2(
)
= 1 + 2
= 3
H = 2(
) + 3(
)
= 2 + 3
= 5
O = 1(
) + 2(
)
+2(
= 1 + 2 + 2
= 5
Na = 1(
= 1
Number of Na =1 , C = 3 , H= 5 and O =5 in both reactant and product , so it is a balanced reaction
2.
This is double displacement reaction .
Check the balancing in both reactant and products should be :
Na = 2
H = 2
Ca = 1
C = 2
O = 6
Cl = 2
Answer:
-209 kJ
Explanation:
I did the math. You're welcome ;)
Answer:

Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ {H}^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7BH%7D%5E%7B%2B%7D%20%5D)
Since we are finding the H+ ions we find the antilog of the pH
So we have

We have the final answer as

Hope this helps you
Answer:
Increasing its mass to twice its original value
Explanation:
Pls mark me brainliest