<span>Myoglobin, like most proteins, has a complex three dimensional structure that is formed from many twisted helices. There are more than one helix, and it does not look like beads on a straight piece of string. It is not branched.</span>
Silicon is the element having a mass of 28.09 g
<u>Explanation</u>:
- Silicon is the element having an atomic mass of 28.09 g / mol. So 28.09 g of silicon contains 6.023
10^23 atoms. One mole of each element can produce one mole of compound.
- The Atomic weight of an element can be determined by the number of protons and neutrons present in one atom of that element. So atomic weight expressed in grams always contain the same number of atoms( 6.023
10^23).
- Avagadro number is the number of atoms of 1 mole of any gas at standard temperature and pressure. It has been determined that 6.023
10^23 atoms of an element are equal to the average atomic mass of that element.
Answer:
105.8 g of Na would be required
Explanation:
Let's think the reaction:
2Na(s) + Cl₂(g) → 2NaCl (s)
1 mol of chlorine reacts with 2 moles of sodium
Then, 2.3 moles of Cl₂ would react with (2.3 .2) / 1 = 4.6 moles
Let's determine the mass of them.
4.6 mol . 23 g/mol = 105.8 g
The answer is C because the weight is going down so they form a gas.
Answer:
16.6 g of Al are produced in the reaction of 82.4 g of AlCl₃
Explanation:
Let's see the decomposition reaction:
2AlCl₃ → 2Al + 3Cl₂
2 moles of aluminum chloride decompose to 2 moles of solid Al and 3 moles of chlorine gas.
We determine the moles of salt:
82.4 g . 1mol/ 133.34g = 0.618 moles
Ratio is 2:2. 2 moles of salt, can produce 2 moles of Al
Then, 0.618 moles of salt must produce 0.618 moles of Al.
Let's convert the moles to mass → 0.618 mol . 26.98g /mol = 16.6 g