1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
3 years ago
14

An aluminum metal rod is heated to 300oC and, upon equilibration at this temperature, it features a diameter of 25 mm. If a tens

ile force of 1 kN is applied axially to this heated rod, what is the expected mechanical response

Engineering
2 answers:
Natalka [10]3 years ago
5 0

Answer:

It will results in mechanical hardening.

ludmilkaskok [199]3 years ago
5 0

Answer: the metal will experience a strain of approximately 2.037Mpa

This strain is lesser than if the force was applied at room temperature.

This will reduce internal stress and increase some mechanical properties of the aluminum such as mechanical hardening.

Explanation:

Detailed explanation and calculation and comparison with equivalent tensile stretching at ordinary room temperature is compared.

You might be interested in
The density of a certain type of steel is 8.1 g/cm3. What is the mass of a 100 cm3 chunk of this steel
irina1246 [14]

Answer:

  810 g

Explanation:

Mass is the product of density and volume:

  m = ρV

  m = (8.1 g/cm³)(100 cm³) = 810 g

The mass of the chunk is 810 grams.

4 0
2 years ago
Quản trị học là gì ? ý nghĩa của quản trị học với thực tế xã hội
Dmitrij [34]

Answer:

I can't understand your language

4 0
3 years ago
A gasoline engine has a piston/cylinder with 0.1 kg air at 4 MPa, 1527◦C after combustion, and this is expanded in a polytropic
Roman55 [17]

Answer:

The expansion work is 71.24 kJ and heat transfer is -16.89 kJ

Explanation:

From ideal gas law,

Initial volume (V1) = nRT/P

n is the number of moles of air in the cylinder = mass/MW = 0.1/29 = 0.00345 kgmol

R is gas constant = 8314.34 J/kgmol.K

T is initial temperature = 1527 °C = 1527+273 = 1800 K

P is initial pressure = 4 MPa = 4×10^6 Pa

V1 = 0.00345×8314.34×1800/(4×10^6) = 0.013 m^3

V2 = 10×V1 = 10×0.013 = 0.13 m^3

The process is a polytropic expansion process

polytropic exponent (n) = 1.5

P2 = P1(V1/V2)^n = 4×10^6(0.013/0.13)^1.5 = 1.26×10^5 Pa

Expansion work = (P1V1 - P2V2) ÷ (n - 1) = (4×10^6 × 0.013 - 1.26×10^5 × 0.13) ÷ (1.5 - 1) = 35620 ÷ 0.5 = 71240 J = 71240/1000 = 71.24 kJ

Heat transfer = change in internal energy + expansion work

change in internal energy (∆U) = Cv(T2 - T1)

T2 = PV/nR = 1.26×10^5 × 0.13/0.00345×8314.34 = 571 K

Cv = 20.785 kJ/kgmol.K

∆U = 20.785(571 - 1800) = -25544.765 kJ/kgmol × 0.00345 kgmol = -88.13 kJ

Heat transfer = -88.13 + 71.24 = -16.89 kJ

5 0
3 years ago
You are working as an electrical technician. One day, out in the field, you need an inductor but cannot find one. Looking in you
telo118 [61]

Answer:

a) the inductance of the coil is 6 mH

b) the emf generated in the coil is 18 mV  

Explanation:

Given the data in the question;

N = 570 turns

diameter of tube d = 8.10 cm = 0.081 m

length of the wire-wrapped portion l =  35.0 cm = 0.35 m

a) the inductance of the coil (in mH)

inductance of solenoid

L = N²μA / l

A = πd²/4  

so

L = N²μ(πd²/4) / l

L = N²μ(πd²) / 4l

we know that μ = 4π × 10⁻⁷ TmA⁻¹

we substitute

L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)

L =  0.00841549 / 1.4

L = 6 × 10⁻³ H    

L = 6 × 10⁻³ × 1000 mH

L = 6 mH

Therefore, the inductance of the coil is 6 mH

b)

Emf ( ∈ ) = L di/dt

given that; di/dt = 3.00 A/sec

{∴ di = 3 - 0 = 3 and dt = 1 sec}

Emf ( ∈ ) = L di/dt

we substitute

⇒ 6 × 10⁻³ ( 3/1 )

= 18 × 10⁻³ V

= 18 × 10⁻³ × 1000

= 18 mV  

Therefore, the emf generated in the coil is 18 mV  

7 0
3 years ago
An 1800-W toaster, a 1400-W electric frying pan, and a 75-W lamp are plugged into the same outlet in a 15-A, 120-V circuit. The
Mila [183]

Answer:

a) Current drawn by the toaster = 15A

Current drawn by the electric frying pan = 11.67A

Current drawn by the lamp = 0.625A

b) This combination will blow the 15A fuse as the total current requirement for this setup exceeds the 15A rating of the fuse.

Explanation:

a) For parallel connection, there exists, the same voltage and different currents across all the devices.

Voltage cross each of the 3 devices = outlet voltage of 120V

From their respective power rating, current drawn by each device will be calculated.

P = IV

For the toaster, P = 1800 W, V = 120V

I = 1800/120 = 15A

For the electric frying pan, P = 1400 W, V = 120 V

I = 1400/120 = 11.67 A

For the lamp, P = 75 W, V = 120V

I = 75/120 = 0.625 A

b) Total current in a parallel connection setup = Sum total of all the currents.

Total current drawn by all 3 devices = 15 + 11.67 + 0.625 = 27.295A = 27.3 A

This total current requirement surpasses the 15A current rating of the fuse, therefore, this combination will blow the fuse.

Hope this Helps!!!

6 0
3 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • What is the energy change when the temperature of 15.0 grams of solid silver is decreased from 37.3 °C to 20.5 °C ?
    13·1 answer
  • A Transmission Control Protocol (TCP) connection is in working order and both sides can send each other data. What is the TCP so
    7·1 answer
  • Which section of business plan should be the bulk of the plan
    7·1 answer
  • As an employee, who is supposed to provide training on the chemicals you are handling or come in contact with at work?
    5·2 answers
  • Which option identifies the type of engineering technician most likely to be involved in the following scenario?
    9·1 answer
  • Which of the following machine parts always require
    12·1 answer
  • Calculate the tensile modulus of elasticity for a laminated composite consisting of 62 percent by volume of unidirectional carbo
    8·1 answer
  • A 1.9-mm-diameter tube is inserted into an unknown liquid whose density is 960 kg/m3, and it is observed that the liquid rises 5
    7·1 answer
  • You insert a dielectric into an air-filled capacitor. How does this affect the energy stored in the capacitor?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!