Answer: 133.88 MPa approximately 134 MPa
Explanation:
Given
Plane strains fracture toughness, k = 26 MPa
Stress at which fracture occurs, σ = 112 MPa
Maximum internal crack length, l = 8.6 mm = 8.6*10^-3 m
Critical internal crack length, l' = 6 mm = 6*10^-3 m
We know that
σ = K/(Y.√πa), where
112 MPa = 26 MPa / Y.√[3.142 * 8.6*10^-3)/2]
112 MPa = 26 MPa / Y.√(3.142 * 0.043)
112 = 26 / Y.√1.35*10^-2
112 = 26 / Y * 0.116
Y = 26 / 112 * 0.116
Y = 26 / 13
Y = 2
σ = K/(Y.√πa), using l'instead of l and, using Y as 2
σ = 26 / 2 * [√3.142 * (6*10^-3/2)]
σ = 26 / 2 * √(3.142 *3*10^-3)
σ = 26 / 2 * √0.009426
σ = 26 / 2 * 0.0971
σ = 26 / 0.1942
σ = 133.88 MPa
Answer:
The line voltage of the three phase network is 346.41 V
Explanation:
Star Connected Load
Resistance, R₁ = R₂ = R₃ = 18 Ω
For a star connected load, the line current = the phase current, that is we have

Whereby the the voltage across each resistance =
is given by the relation;
=
× R
Hence;
=
=
× R = 25 × 8 = 200 V
Therefore we have;
The line voltage,
= √3 ×
= √3 × 200 = 346.41 V.
Hence, the line voltage of the three phase network = 346.41 V.
Answer:
Plumbing using a one-way check valve to stop water flowing back on a pump when the pump shuts off.
Explanation:
Diodes are like check valves, keeping current from flowing both ways. Used to create d.c. out of a.c by rectification. Also to block flow if d.c. power like a battery is hooked up in reverse polarity.
Answer:
2.77mpa
Explanation:
compressive strength = 20 MPa. We are to find the estimated flexure strength
We calculate the estimated flexural strength R as
R = 0.62√fc
Where fc is the compressive strength and it is in Mpa
When we substitute 20 for gc
Flexure strength is
0.62x√20
= 0.62x4.472
= 2.77Mpa
The estimated flexure strength is therefore 2.77Mpa