Answer:
P= 5.5 bar
Explanation:
Given that
L= 4000 m
d= 0.2 m
Friction factor(F) = 0.01
speed V= 2 m/s
Head = 5 m
Head loss due to friction
So the total head(H) = 5 + 40.77 + 10.3 =56.07
Where 10.3 m is the atmospheric head.
We know that
P=ρ g H
So total Pressure
P= 1000 x 9.81 x 56.07 Pa
P= 5.5 bar
Answer: electrical, mathematical, and geographical
Explanation: Yee
- Cash Nasty
Answer:
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.
Step-by-step solution:
Step 1 of 5
Given data:-
The velocity of water is .
The water flow rate is.
Answer:
By definition the ultimate tensile strength is the maximum stress in the stress-strain deformation. The stress at 0.2% strain, the stress at the onset of plastic deformation, the stress at the end of the elastic deformation and the stress at the fracture correspond, by definition, to other points of the stress-strain curve.
Explanation:
Answer:
leggings
Explanation:
they allow the metal or sparks to not hurt you can the leggings can be easily and quickly removed.