The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.
Answer:10.4 times of initial velocity
Explanation:
Given
Diameter reduced by 69 %
it approaches with velocity 
suppose its velocity is v during blocked passage
suppose d is the initial diameter and
diameter is



As flow is constant



Answer:
194516 sheets
Explanation:
So the area of each sheet of paper is:
A = 0.216 * 0.279 = 0.060264 square meters
For the paper sheet to make the same effect as the atmospheric pressure P, then the gravity F from the paper sheet must be
F = AP = 0.060264 * 101325 = 6106 N
Let g = 9.81 m/s2, then the mass of paper needed to generate that gravity is
m = F/g = 6106 / 9.81 = 622.4 kg
If each sheet has a mass of 0.0032 kg, then the total number of sheets to have that much mass is
622.4 / 0.0032 = 194516 sheets
B an open system flow both