Answer:
S = V t where S is the horizontal distance traveled
1/2 g t^2 = H where H is the vertical distance traveled
t^2 = 2 H / g
V^2 = S^2 / t^2 = S^2 g / (2 H) combining equations
tan theta = H / S
V^2 = S g / (2 tan theta)
Using S = L cos theta
V^2 = L g cos theta / (2 tan theta)
Giving V in terms of L and theta
Answer:
Height, h = 16.67 m
Explanation:
We have,
Mass of a squirrel is 0.765 kg.
He jumps off the tree and hits the ground with 125 joules of energy.
It is required to find the height up on the tree the squirrel was when it jumped.
The energy possessed by the squirrel is called its gravitational potential energy. It can be given by :

h is height up on the tree the squirrel was when it jumped

So, the squirrel will go to a height of 16.67 m.
Answer:
0.05806
Explanation:
= Mass of asteroid x
= Mass of asteroid y
= Distance from asteroid x = 140 km
= Distance from asteroid y = 581 km
m = Mass of asteroid
Force of gravity between asteroid x and the astronaut

Force of gravity between asteroid x and the astronaut

Here these two forces are equal as they are in equilibrium

The ratio of the masses of the asteroid is 0.05806
5000.700 is the answer good luck
Buoyant force A. acts in the upward direction.
If the Buoyant force is greater than the gravitational force (as seen in ducks), they will stay floated
If the Buoyant force is less than the gravitational force (for example, a leaking ship) the ship would sink.
hope this helps