1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
2 years ago
15

A 0.15-m straight wire moves with a constant velocity of 7.0 m/s perpendicularly

Physics
1 answer:
lana66690 [7]2 years ago
8 0

Answer: force is 0.42 N

Explanation: F = l·v·B

You might be interested in
A large rock of mass me materializes stationary at the orbit of Mercury and falls into the sun. Itf the Sun has a mass ms and ra
son4ous [18]

Answer:

The answer is v = \sqrt{2G\frac{M_s}{R^2}(R-r_s)}.

Explanation:

From the law of gravity,

F = G \frac{Mm}{r^2}

considering F as a conservative force, F = - \nabla U,

the general expression for gravitational potential energy is

U = -G \frac{Mm}{r},

where G is the gravitational constant, M and m are the mass of the attracting bodies, and r is the distance between their centers. The negative sign is because the force approaches zero for large distances, and we choose the zero of gravitational potential energy at an infinite distance away.

However, as the mass of the Sun is much greater than the mass of the rock, the gravitational acceleration is defined as

g = -G \frac{M}{r^2},

(the negative sign indicates that the force is an attractive force), and the potential energy between the rock and the Sun is

U = g M_e R,

which is actually the total energy of the system, because the rock materializes stationary at this point (there is no radial kinetic energy).

When the rock hits the surface of the Sun, almost all potential energy is converted to kinetic energy, but not all because the Sun is not a puntual mass. So the potential energy converted to kinetic energy is

U_p = g M_e(R- r_s),

then, the kinetik energy when the rock hits the surface is

U_k =\frac{1}{2}M_e v^2 = g M_e(R- r_s),

so

v = \sqrt{2g(R-r_s)}

where g is the gravitational acceleration generated by the Sun at R,

g = G \frac{M_s}{R^2}.

8 0
2 years ago
 explain why earths acceleration is usually very small compared to the acceleration of the object the earth interact with
Marianna [84]

Answer:

F-ma

Explanation:

If you are speaking of objects like satellites, etc. then their mass is much less than that of the Earth. A good approximation is Newton's first law of motion:

Force = Mass ×  Acceleration

often written:

F = m a

The gravitational force is the same between the Earth and the object - only the mass differs. So the acceleration is inversely proportional to the mass.

6 0
2 years ago
A beaker has a mass of 125g. What is the mass of this beaker in decigrams
Anit [1.1K]
1250 decigrams
1 gram = 10 decigrams
4 0
3 years ago
The two speakers at S1 and S2 are adjusted so that the observer at O hears an intensity of 6 W/m² when either S1 or S2 is sounde
Zanzabum

Answer:

The minimum frequency is 702.22 Hz

Explanation:

The two speakers are adjusted as attached in the figure. From the given data we know that

S_1 S_2=3m

S_1 O=4m

By Pythagoras theorem

                                 S_2O=\sqrt{(S_1S_2)^2+(S_1O)^2}\\S_2O=\sqrt{(3)^2+(4)^2}\\S_2O=\sqrt{9+16}\\S_2O=\sqrt{25}\\S_2O=5m

Now

The intensity at O when both speakers are on is given by

I=4I_1 cos^2(\pi \frac{\delta}{\lambda})

Here

  • I is the intensity at O when both speakers are on which is given as 6 W/m^2
  • I1 is the intensity of one speaker on which is 6  W/m^2
  • δ is the Path difference which is given as

                                           \delta=S_2O-S_1O\\\delta=5-4\\\delta=1 m

  • λ is wavelength which is given as

                                             \lambda=\frac{v}{f}

      Here

              v is the speed of sound which is 320 m/s.

              f is the frequency of the sound which is to be calculated.

                                  16=4\times 6 \times cos^2(\pi \frac{1 \times f}{320})\\16/24= cos^2(\pi \frac{1f}{320})\\0.667= cos^2(\pi \frac{f}{320})\\cos(\pi \frac{f}{320})=\pm0.8165\\\pi \frac{f}{320}=\frac{7 \pi}{36}+2k\pi \\ \frac{f}{320}=\frac{7 }{36}+2k \\\\ {f}=320 \times (\frac{7 }{36}+2k )

where k=0,1,2

for minimum frequency f_1, k=1

                                  {f}=320 \times (\frac{7 }{36}+2 \times 1 )\\\\{f}=320 \times (\frac{79 }{36} )\\\\ f=702.22 Hz

So the minimum frequency is 702.22 Hz

5 0
2 years ago
​A piston–cylinder assembly contains 5.0 kg of air, initially at 2.0 bar, 30 oC. The air undergoes a process to a state where th
vlada-n [284]

Answer:

Explanation:

The process is isothermic,  as P V = constant .

work done = 2.303 n RT log P₁ / P₂

= 2.303 x 5 / 29 x 8.3 x 303  log 2 / 1 kJ

= 300.5k J

This energy in work done by the gas will come fro heat supplied as internal energy is constant due to constant temperature.

heat supplied  = 300.5k J

specific volume is volume per unit mass

v / m

pv = n RT

pv  = m / M  RT

v / m = RT / p M

specific volume = RT / p M

option B is correct.

5 0
3 years ago
Other questions:
  • Which of the following happens when unbalanced forces act on an object? The object remains stationary. The object moves with the
    5·2 answers
  • can someone please answer my last question I posted? On my last post? My hw is due tomorrow and I’m confused.
    8·1 answer
  • A diffraction grating is made up of slits of width 260 nm with separation 810 nm. The grating is illuminated by monochromatic pl
    15·1 answer
  • the public is not yet able to purchase hydrogen fuel cell powered cars because engineers have to determine
    9·1 answer
  • A 55-liter tank is full and contains 40kg of fuel. Find using Sl units: • Density p. • Specific Weight y • Specific Gravity Answ
    12·1 answer
  • A car with mass 1600 kg drives around a flat circular track of radius 28.0 m. The coefficient of friction between the car tires
    5·1 answer
  • If a Is close enough to a ,then it will form a nova?
    9·1 answer
  • A rod (length = 80 cm) with a rectangular cross section (1.5 mm × 2.0 mm) has a resistance of 0.20 Ω. What is the resistivity of
    5·1 answer
  • A runner jogs 1 km south to a school, then jogs 1km west to a restaurant. What is the position of the runner relative to the sch
    15·1 answer
  • The electricity received at an electrical substation has a potential difference of 20,000 V. What should the ratio of the turns
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!