1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxTIMURxx [149]
3 years ago
6

The following equations represent part of a radioactive decay series:

Chemistry
1 answer:
Tasya [4]3 years ago
5 0
Ok, I see you have written the radioactive decay correctly, but what exactly is your question?
You might be interested in
Two solid samples each contain sulfur, oxygen, and sodium, only. These samples have the same color, melting point, density, and
katovenus [111]
<span>The correct answer is 1. compound. There are three elements and not just one so it's not element. Mixtures wouldn't have the same properties that you described but these do so it's a compounds. Solution is not a solid thing but rather a liquid one. The two samples are therefore compounds.</span>
7 0
3 years ago
Be(OH)2 is solid why?​
pickupchik [31]

Answer:

no it's not solid rather it's an aqueous

Explanation:

B/c Barium hydroxide is used in analytical chemistry for the titration of weak acids, particularly organic acids. Its clear aqueous solution is guaranteed to be free of carbonate, unlike those of sodium hydroxide and potassium hydroxide, as barium carbonate is insoluble in water.

8 0
2 years ago
Help me out please an thank you
ivanzaharov [21]
The second one, I could be mistaken though
3 0
3 years ago
Explain what happens to the light ray when above and below the line are both water
IceJOKER [234]

<>"Refraction is the bending of the path of a light wave as it passes from one material into another material. The refraction occurs at the boundary and is caused by a change in the speed of the light wave upon crossing the boundary. The tendency of a ray of light to bend one direction or another is dependent upon whether the light wave speeds up or slows down upon crossing the boundary. The speed of a light wave is dependent upon the optical density of the material through which it moves. For this reason, the direction that the path of a light wave bends depends on whether the light wave is traveling from a more dense (slow) medium to a less dense (fast) medium or from a less dense medium to a more dense medium. In this part of Lesson 1, we will investigate this topic of the direction of bending of a light wave.    

Predicting the Direction of Bending

Recall the Marching Soldiers analogy discussed earlier in this lesson. The analogy served as a model for understanding the boundary behavior of light waves. As discussed, the analogy is often illustrated in a Physics classroom by a student demonstration. In the demonstration, a line of students (representing a light wave) marches towards a masking tape (representing the boundary) and slows down upon crossing the boundary (representative of entering a new medium). The direction of the line of students changes upon crossing the boundary. The diagram below depicts this change in direction for a line of students who slow down upon crossing the boundary.

On the diagram, the direction of the students is represented by two arrows known as rays. The direction of the students as they approach the boundary is represented by an incident ray (drawn in blue). And the direction of the students after they cross the boundary is represented by a refracted ray (drawn in red). Since the students change direction (i.e., refract), the incident ray and the refracted ray do not point in the same direction. Also, note that a perpendicular line is drawn to the boundary at the point where the incident ray strikes the boundary (i.e., masking tape). A line drawn perpendicular to the boundary at the point of incidence is known as a normal line. Observe that the refracted ray lies closer to the normal line than the incident ray does. In such an instance as this, we would say that the path of the students has bent towards the normal. We can extend this analogy to light and conclude that:

Light Traveling from a Fast to a Slow Medium

If a ray of light passes across the boundary from a material in which it travels fast into a material in which travels slower, then the light ray will bend towards the normal line.

The above principle applies to light passing from a material in which it travels fast across a boundary and into a material in which it travels slowly. But what if light wave does the opposite? What if a light wave passes from a material in which it travels slowly across a boundary and into a material in which it travels fast? The answer to this question can be answered if we reconsider the Marching Soldier analogy. Now suppose that the each individual student in the train of students speeds up once they cross the masking tape. The first student to reach the boundary will speed up and pull ahead of the other students. When the second student reaches the boundary, he/she will also speed up and pull ahead of the other students who have not yet reached the boundary. This continues for each consecutive student, causing the line of students to now be traveling in a direction further from the normal. This is depicted in the diagram below.

"<>

4 0
4 years ago
An airplane travels 2100 km at 1000km/hE. It encounters a wind and slows to 800 km/h E for the next 1300 km. What is the average
Deffense [45]

Answer:

The average velocity of the airplane for this trip is 1684.21 km/h

Explanation:

Average velocity is the rate of change of displacement with time. That is,

Average velocity = \frac{Displacement }{Change in time} = Δx / Δt = \frac{x2 - x1}{t2 - t1}

Now we will calculate the time taken by the airplane for the first motion before it encounters a wind.

From,

Velocity = \frac{Distance traveled}{Time taken}

Time = \frac{Distance traveled}{Velocity}

Therefore, Time = \frac{2100km }{1000km/h}

Time = 2.1h

This is the time taken before the airplane encounters a wind.

Hence, t1 = 2.1h

Now, For the time taken by the airplane when it encounters a wind

Also from,

Velocity = \frac{Distance traveled}{Time taken}

Time = \frac{Distance traveled}{Velocity}

Therefore, Time = \frac{1300km }{800km/h}

Time = 1.625h

Hence, t2 = 1.625h

Now, to calculate the average velocity

Average velocity = \frac{x2 - x1}{t2 - t1}

x1= 2100, x2= 1300, t1= 2.1h and t2= 1.625h

Hence, Average velocity = \frac{1300 - 2100}{1.625 - 2.1}

Average velocity = 1684.21 km/h

7 0
3 years ago
Other questions:
  • internal pressure is 1.25 atm, and its volume is 2.50 L. If the balloon is taken to the bottom of the ocean (pressure = 95.0 atm
    11·1 answer
  • Which symbol in a chemical equation separates the reactants from the products?​
    9·2 answers
  • What is R in the ideal gas law equation
    10·2 answers
  • Many antacids contain solid calcium carbonate. Explain how antacids with calcium carbonate function.
    13·2 answers
  • Calculate the pH of a 0.0224M HCl solution.
    10·1 answer
  • Question 1
    5·1 answer
  • Which of these is NOT a producer in the coral reef ecosystem? *
    7·1 answer
  • NEED HELP FAST! 20 POINTS!!
    15·2 answers
  • You plan to use the water displacement method to
    13·1 answer
  • Mr. Jones's prescription calls for 1.04 tablets per day. Based on this information, how many tablets should Mr. Jones take per d
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!