1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
13

The brick wall (of thermal conductivity 1.12 W/m · ◦ C) of a building has dimensions of 2.8 m by 5 m and is 8 cm thick. How much

heat flows through the wall in a 16.7 h period when the average inside and outside temperatures are, respectively, 12◦C and 3◦C? Answer in units of
Physics
1 answer:
hichkok12 [17]3 years ago
5 0

Answer:

Explanation:

If H be the heat flowing in time t through an area of A having thickness d

H = k A x ( θ₂ - θ₁ ) t / d  , k is thermal conductivity , ( θ₂ - θ₁ ) is temperature difference of walls

putting the given values

= (1.12 x 2.8x 5 x 9 x 16.7 x 60 x 60) / .08

= 1.06 x 10⁸ J .

You might be interested in
In general, fitness evaluations are meant to help you measure your physical fitness against those of similar age and gender
kirill [66]

Answer:

true

Explanation:

edge2020

8 0
3 years ago
Read 2 more answers
You shoot an arrow into the air. Two seconds later (2.00 s) the arrow has gone straight upward to a height of 35.0 m above its l
sdas [7]

This question can be solved by using the equations of motion.

a) The initial speed of the arrow is was "9.81 m/s".

b) It took the arrow "1.13 s" to reach a height of 17.5 m.

a)

We will use the second equation of motion to find out the initial speed of the arrow.

h= v_it + \frac{1}{2}gt^2\\

where,

vi = initial speed = ?

h = height = 35 m

t = time interval = 2 s

g = acceleration due to gravity = 9.81 m/s²

Therefore,

35\ m = (v_i)(2\ s)+\frac{1}{2}(9.81\ m/s^2)(2\ s)^2\\\\v_i(2\ s)=19.62\ m\\\\v_i = \frac{19.62\ m}{2\ s}

<u>vi =  9.81 m/s</u>

b)

To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.

h= v_it + \frac{1}{2}gt^2\\

where,

g = acceleration due to gravity = 9.81 m/s²

h = height = 17.5 m

vi = initial speed = 9.81 m/s

t = time = ?

Therefore,

17.5 = (9.81)t+\frac{1}{2}(9.81)t^2\\4.905t^2+9.81t-17.5=0

solving this quadratic equation using the quadratic formula, we get:

t = -3.13 s (OR) t = 1.13 s

Since time can not have a negative value.

Therefore,

<u>t = 1.13 s</u>

Learn more about equations of motion here:

brainly.com/question/20594939?referrer=searchResults

The attached picture shows the equations of motion in the horizontal and vertical directions.

4 0
2 years ago
Crude oil coal and peat are examples of fossil fuels name another one<br><br>​
Nikolay [14]

Answer:

petroleum and Natural gas are fossil fuels

Explanation:

3 0
3 years ago
A spherical shell is rolling without slipping at constant speed on a level floor. What percentage of the shell's total kinetic e
IgorC [24]

Answer:

41.667 per cent of the total kinetic energy is translational kinetic energy.

Explanation:

As the spherical shell is rolling without slipping at constant speed, the system can be considered as conservative due to the absence of non-conservative forces (i.e. drag, friction) and energy equation can be expressed only by the Principle of Energy Conservation, whose total energy is equal to the sum of rotational and translational kinetic energies. That is to say:

E = K_{t} + K_{r}

Where:

E - Total energy, measured in joules.

K_{r} - Rotational kinetic energy, measured in joules.

K_{t} - Translational kinetic energy, measured in joules.

The spherical shell can be considered as a rigid body, since there is no information of any deformation due to the motion. Then, rotational and translational components of kinetic energy are described by the following equations:

Rotational kinetic energy

K_{r} = \frac{1}{2}\cdot I_{g}\cdot \omega^{2}

Translational kinetic energy

K_{t} = \frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2}

Where:

I_{g} - Moment of inertia of the spherical shell with respect to its center of mass, measured in kg\cdot m^{2}.

\omega - Angular speed of the spherical shell, measured in radians per second.

R - Radius of the spherical shell, measured in meters.

After replacing each component and simplifying algebraically, the total energy of the spherical shell is equal to:

E = \frac{1}{2}\cdot (I_{g} + m\cdot R^{2})\cdot \omega^{2}

In addition, the moment of inertia of a spherical shell is equal to:

I_{g} = \frac{2}{3}\cdot m\cdot R^{2}

Then, total energy is reduced to this expression:

E = \frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2}

The fraction of the total kinetic energy that is translational in percentage is given by the following expression:

\%K_{t} = \frac{K_{t}}{E}\times 100\,\%

\%K_{t} = \frac{\frac{1}{2}\cdot m \cdot R^{2}\cdot \omega^{2} }{\frac{5}{6}\cdot m \cdot R^{2}\cdot \omega^{2} } \times 100\,\%

\%K_{t} = \frac{5}{12}\times 100\,\%

\%K_{t} = 41.667\,\%

41.667 per cent of the total kinetic energy is translational kinetic energy.

7 0
4 years ago
calculating power reach each scenario and then answer the questions scenario a 120 j of work is done in 6 seconds scenario b 160
Molodets [167]

Answer: scenario b and scenario c uses most power

Explanation:

Scenario a:

Work=120J

Time=8 seconds

Power=work ➗ time

Power=120 ➗ 8

Power=15

Power=15 watts

Scenario b:

Work=160J

Time=8 seconds

Power=work ➗ time

Power=160 ➗ 8

Power=20

Power =20 watts

Scenario c:

Work=200J

Time=10 seconds

Power= work ➗ time

Power=200 ➗ 10

Power=20

Power=20 watts

Scenario b and scenario c uses most power

4 0
4 years ago
Other questions:
  • Taking the resistivity of platinoid as 3.3 x 10-7 m, find the resistance of 7.0 m of platinoid wire of average diameter 0.14 cm.
    12·1 answer
  • Choose all correct sentences
    15·1 answer
  • A mass is hung from a spring and set in motion so that it oscillates continually up and down. The velocity v of the weight at ti
    9·1 answer
  • Carbon monoxide (CO) _____.
    7·2 answers
  • A massive object can distort the light of more distant objects behind it through the phenomenon that we call __________
    7·1 answer
  • The downsprue leading into the runner of a certain mold has a length of 175 mm. The cross-sectional area at the base of the spru
    14·1 answer
  • When a body is accelerated under water, some of the surrounding water is also accelerated. This makes the body appear to have a
    15·1 answer
  • Two cars each have a mass of 1050 kg. If the gravitational force between
    13·2 answers
  • A light bulb has a resistance of 5 ohms and a maximum current of 10 A. How much voltage can be applied before the bulb will brea
    6·1 answer
  • A long thing bar of copper is heated evenly along it's length
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!