Answer :
The equilibrium concentration of CO is, 0.016 M
The equilibrium concentration of Cl₂ is, 0.034 M
The equilibrium concentration of COCl₂ is, 0.139 M
Explanation :
The given chemical reaction is:

Initial conc. 0.1550 0.173 0
At eqm. (0.1550-x) (0.173-x) x
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.139 and x = 0.193
We are neglecting value of x = 0.193 because equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.139
The equilibrium concentration of CO = (0.1550-x) = (0.1550-0.139) = 0.016 M
The equilibrium concentration of Cl₂ = (0.173-x) = (0.173-0.139) = 0.034 M
The equilibrium concentration of COCl₂ = x = 0.139 M
Answer:
Organic compound
Explanation:
Acetominophen's molecular formula is C8H9NO2. Right from the formula you can also see that the compound has C (carbon) in it, therefore making it an organic compound (in which the definition is that the compound contains carbon in it).
Answer: c. greater than 7.00
Explanation: The equivalence point of a titration is when all the base is consumed by the acid. When a strong base and a strong acid react, the medium is neutralized because is produced water and salt (which won't suffer hydrolysis). How water's pH is 7, in this type of titration the pH of the equivalence point will be at pH=7. But on titration of a weak acid with a strong base, the reaction of the equivalence point produces water and the conjugate base of the acid. Because the acid is weak, their conjugate base will be strong and will suffer hydrolysis, producing hydroxyl ions, elevating the pH of the water and making it greater than 7.
Answer:
C
Explanation:
Plants help in carbon dioxode reduction so plants uses atmospheric carbon dioxide and water to produce sugars and oxygen.
HOPE ITS HOPEFUL.
B. False
Stability is determined by the ratio of neutrons and protons. Electrons are not in nucleus.