Answer:
Explanation:
Since water has a chemical formula of H2O , there will be 2 moles of hydrogen in every mole of water. In one mole of water, there will exist approximately 6.02⋅1023 water molecules.
Redox (red for reduction and ox for oxidation)
Answer:
MgCO₃
Explanation:
From the question given above, we obtained:
MgF₂ + Li₂CO₃ —> __ + 2LiF
The missing part of the equation can be obtained by writing the ionic equation for the reaction between MgF₂ and Li₂CO₃. This is illustrated below:
MgF₂ (aq) —> Mg²⁺ + 2F¯
Li₂CO₃ (aq) —> 2Li⁺ + CO₃²¯
MgF₂ + Li₂CO₃ —>
Mg²⁺ + 2F¯ + 2Li⁺ + CO₃²¯ —> Mg²⁺CO₃²¯ + 2Li⁺F¯
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Now, we share compare the above equation with the one given in the question above to obtain the missing part. This is illustrated below:
MgF₂ + Li₂CO₃ —> __ + 2LiF
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Therefore, the missing part of the equation is MgCO₃
A: the ball in frame A had the highest velocity, and the ball in frame B has the highest kinetic energy
Density of the gas is 3.05 × 10⁻³ g / cm³.
<u>Explanation:</u>
Volume of the cylinder = π r² h
where r is the radius and h is the height of the height or the length of the glass tube.
Here r = 4 cm and h = 27.4 cm
Volume of the cylinder = 3.14 × 4 × 4 × 27.4 = 1376.6 cm³
We have to find the mass of the gas by subtracting the mass of the tube filled with the substance from the mass of the empty tube.
Mass of the substance = 258.5 - 254.3 = 4.2 g
We have to find the density using the formula as,

Plugin the values as,
= 3.05 × 10⁻³ g / cm³
So the Density of the gas is 3.05 × 10⁻³ g / cm³.