Answer:
36.8 L
Explanation:
We'll begin by converting 80 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 80 °C
T(K) = 80 + 273
T(K) = 353 K
Finally, we shall determine the volume occupied by the helium gas. This can be obtained as follow:
Number of mole (n) = 1.27 moles
Temperature (T) = 353 K
Pressure (P) = 1 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
PV = nRT
1 × V = 1.27 × 0.0821 × 353
V = 36.8 L
Thus, the volume occupied by the helium gas is 36.8 L
<span>boron trichloride + water → boric acid + hydrochloric acid</span>
Answer:
<h3>The International Union of Pure and Applied Chemistry (IUPAC) defines alkanes as "acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms". ... The number of carbon atoms may be considered as the size of the alkane.</h3>
For Less number of oxygen atoms will be less acidic. Therefore, the rank will be.... So there is 1 oxygen atom bonded to each of the 2 nitrogen atoms.
For HNO3 or {HONO}2. So there are 3 oxygen atoms bonded to the nitrogen.
For HNO2 or HONO. So there are 2 oxygen atoms bonded to the nitrogen.
Less number of oxygen atoms will be less acidic. Therefore, the rank will be...
HNO3>HNO2>H2N2O2
Acid strength is the tendency of an acid, symbolized by the chemical formula, to dissociate into a proton, and an anion, The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.
The strength of a weak organic acid may depend on substituent effects. The strength of an inorganic acid depends on the atom’s oxidation state to which the proton may be attached. Acid strength is solvent-dependent. For example, hydrogen chloride is a strong acid in an aqueous solution but is a weak acid when dissolved in glacial acetic acid.
Learn more about Acid strength here:
brainly.com/question/3223615
#SPJ4
Answer:
We need 92.3 grams of sodium azide
Explanation:
Step 1: Data given
Mass of nitrogen gas = 59.6 grams
Molar mass of nitrogen gas = 28.0 g/mol
Molar mass of sodium azide = 65.0 g/mol
Step 2: The balanced equation
2NaN3 → 2Na + 3N2
Step 3: Calculate moles nitrogen gas
Moles N2 = mass N2 / molar mass N2
Moles N2 = 59.6 grams/ 28.0 g/mol
Moles N2 = 2.13 moles
Step 4: Calculate moles NaN3
for 2 moles NaN3 we'll have 2 moles Na and 3 moles N2
For 2.13 moles N2 we need 2/3* 2.13 = 1.42 moles NaN3
Step 5: Calculate mass NaN3
Mass NaN3 = Moles NaN3 * molar mass NaN3
Mass NaN3 = 1.42 moles * 65.0 g/mol
Mass NaN3 = 92.3 grams
We need 92.3 grams of sodium azide