15444 ways we can choose 5 objects, without replacement, from 15 distinct objects.
Given that, suppose we want to choose 5 objects, without replacement, from 15 distinct objects.
<h3>What is a permutation?</h3>
A permutation is a mathematical calculation of the number of ways a particular set can be arranged, where the order of the arrangement matters.
Now,
= 13!/(13-5)!
= 13!/8! = 13x12x11x10x9= 1287 x 120 = 15,444
Therefore, 15444 ways we can choose 5 objects, without replacement, from 15 distinct objects.
To learn more about the permutation visit:
brainly.com/question/1216161.
#SPJ1
Answer:
2/5
Step-by-step explanation:
First you want to find the least common denominator, which in this case would be 15. If you multiply 2/5 by 3, you get 6/15 which is less than 7/15
Answer:D
Step-by-step explanation:fsdgffdsfsdfsfdsf
Answer:
The answer is 32x+67
Step-by-step explanation: