D. The osculations show a variable rate of motion. Hope this helps:)
Answer:
Every electric circuit in a wiring system must be protected against overloads. A circuit overload occurs when the amount of current flowing through the circuit exceeds the rating of the protective devices. The amount of current flowing in a circuit is determined by the load -- or the "demand" -- for current.
Explanation:
Hope this helps :)
Answer:
Newton’s Three Laws of Motion has a great impact.
Explanation:
Newton’s Three Laws of Motion has a great impact on the bowling game for the 2 students. When the student one throw ball to the student 2, the ball decrease its speed due to the gravity and opposing air. If these forces are removed from the system the ball will continue its motion till another force is applied on it. When the force applied to the ball it produces acceleration in the direction to the applied force. If the ball touches the ground it bounce back with equal force which is a reaction of the ground.
From the calculation, the gravitational force of attraction is 1.33 * 10^-14 N.
<h3>What is the gravitational force?</h3>
The gravitational force is an attractive force that acts between any two masses.
It is given by;
F = Gm1m2/r^2
F = 6.67 * × 10−11 * 2.5 * 5/(250)^2
F = 83.4 × 10−11 /62500
F= 1.33 * 10^-14 N
Learn more about gravitational force:brainly.com/question/12528243
#SPJ1
Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km