D I think .... don’t be mad if I’m wrong
In the process of peppering the question with those forty (40 !) un-necessary quotation marks, you neglected to actually show us the illustration. So we have no information to describe the adjacent positions, and we're not able to come up with any answer to the question.
Answer:
The volume of copper is 2.198 ml
Explanation:
Given;
mass of copper, m = 20 g
density of copper, ρ = 9.1 g/ml
Density is given by;
Density = mass / volume
Volume = mass / density
Volume = (20 g) / (9.1 g/ml)
Volume = 2.198 ml
Therefore, the volume of copper is 2.198 ml
As the <em>voltage</em> applied to a crcuit increases, the power dissipated by the circuit, and the current flowing through the circuit, both also increase.
Answer:
840000 J/min
Explanation:
Area = A = 0.1 m²
Bottom of pot temperature = 200 °C
Thermal conductivity = k = 14 J/sm°C
Thickness = L = 1 cm = 0.01 m
Temperature of boiling water = 100 °C
From the law of heat conduction
Q = kAΔT/L
⇒ Q = 14×0.1×(200-100)/0.01
⇒ Q = 14000 J/s
Converting to J/minute
Q = 14000×60 = 840000 J/min
∴ Heat being conducted through the pot is 840000 J/min