Answer:
We can solve this by the method of which i solved your one question earlier
so again here molar mass of C12H25NaSO4 is 288.372 and number of moles for 11900 gm of C12H25NaSO4 will be = 11900/288.372
which is almost = 41.26 moles
so to get one mole of C12H25NaSO4 we need one mole of C12H26O
so for 41.26 moles of C12H25NaSO4 it will require 41 26 moles of C12H26O
so the mass of C12H26O = 41.26× its molar mass
C12H26O = 41.26×186.34
= 7688.38 gm!!
so the conclusion is If you need 11900 g of C12H25NaSO4 (Sodium Lauryl Sulfate) you need C12H26O 7688.38 gm !!
Again i d k wether it's right or wrong but i tried my best hope it helped you!!
The carbon cycle involves the circulation of carbon dioxide (CO2<span>) from the atmosphere into plants and other living organisms; the transfer of carbon from these organisms into other temporary storage pools, living or nonliving, containing organic and </span>inorganic<span> carbon compounds; and the return of CO</span>2<span> to the atmosphere </span>
Answer:
The final product of the reaction is (<em>2S,3S</em>)-2-ethoxy-3-methylpentane.
Explanation:
The given reaction undergoes
mechanism in which the nucleophile attacks the backside and it is substituted by the elimination of bromine.
Due to the backside attack of nucleophile , the inverse in stereo-chemistry is observed.
After the substitution of ethoxy group, the configuration is assigned according to the priority it shows clock wise direction(R) - configuration.
When hydrogen faces the front side , it results shows inverse configuration i.e, S- configuration.
The chemical reaction is as follows.
Answer:
Bohr thought that electrons orbited the nucleus in circular paths; whereas in the modern view atomic electron structure is more like 3D standing waves. Bohr built upon Rutherford's model of the atom. ... He believed that electrons moved around the nucleus in circular orbits with quantised potential and kinetic energies.
Explanation: